The origin of electrical resistance at the interface between the positive electrode and solid electrolyte of an all-solid-state Li battery has not been fully determined. It is well known that the interface resistance increases when the electrode surface is exposed to air. However, an effective method of reducing this resistance has not been developed. This report demonstrates that drastic reduction of the resistance is achievable by annealing the entire battery cell. Exposing the LiCoO positive electrode surface to HO vapor increases the resistance by more than 10 times (to greater than 136 Ω cm). The magnitude can be reduced to the initial value (10.3 Ω cm) by annealing the sample in a battery form. First-principles calculations reveal that the protons incorporated into the LiCoO structure are spontaneously deintercalated during annealing to restore the low-resistance interface. These results provide fundamental insights into the fabrication of high-performance all-solid-state Li batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c17945DOI Listing

Publication Analysis

Top Keywords

drastic reduction
8
interface resistance
8
battery form
8
positive electrode
8
electrode surface
8
resistance
6
reduction solid
4
solid electrolyte-electrode
4
interface
4
electrolyte-electrode interface
4

Similar Publications

Extending the MST Model to Large Biomolecular Systems: Parametrization of the ddCOSMO-MST Continuum Solvation Model.

J Comput Chem

January 2025

Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona, Spain.

Continuum solvation models such as the polarizable continuum model and the conductor-like screening model are widely used in quantum chemistry, but their application to large biosystems is hampered by their computational cost. Here, we report the parametrization of the Miertus-Scrocco-Tomasi (MST) model for the prediction of hydration free energies of neutral and ionic molecules based on the domain decomposition formulation of COSMO (ddCOSMO), which allows a drastic reduction of the computational cost by several orders of magnitude. We also introduce several novelties in MST, like a new definition of atom types based on hybridization and an automatic setup of the cavity for charged regions.

View Article and Find Full Text PDF

SLC35A2 modulates paramyxovirus fusion events during infection.

PLoS Pathog

January 2025

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America.

Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized eGFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection.

View Article and Find Full Text PDF

An overcrowded ethylene composed of electron-donating anion, naphthoxide, and electron-accepting cation, acridinium, has been synthesized. It is in equilibrium between a folded conformer having a smaller permanent dipole moment with visible light absorption and a twisted conformer having a larger permanent dipole moment with NIR light absorption. The overcrowded ethylene shows multiple NIR chromisms, such as solvatochromism, thermochromism, mechanochromism, vapochromism, halochromism, and amphoteric electrochromisms, which are caused by the conformational change between folded and twisted conformers or by controlling the energy difference between the HOMO of the donor moiety and the LUMO of the acceptor moiety.

View Article and Find Full Text PDF

Enhanced antibody responses in CD19-Cre mice.

Sci Rep

January 2025

Institute of Biomedicine and MediCity Research Laboratories, University of Turku, Turku, Finland.

CD19-Cre is an important and widely used Cre-lox model for B cell-specific genetic manipulation in murine systems. Mice carrying one allele of CD19-Cre are, at the same time, rendered heterozygote for CD19, a crucial coreceptor of the B cell antigen receptor (BCR). As a result, CD19-Cre mice exhibit diminished expression levels of CD19, with potential, yet insufficiently examined, consequences in B cell activation.

View Article and Find Full Text PDF

The pace of research efforts has been extraordinarily accelerated across the globe to address the contamination issues caused by pesticides, and fertilizers, especially in the aquatic ecosystem. The sole aim of this study was to assess the effect of urea on Nile Tilapia (Oreochromis niloticus). For this purpose, the fish fingerlings were exposed to increasing concentrations of urea such as 0, 1, 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!