Apples are prone to be contaminated with Penicillium expansum, which produces the mycotoxin patulin, posing a risk for human health. Antifungal treatments are required to control this fungal pathogen, although consumers demand products free of synthetic additives. Then, the use of antifungal proteins produced by moulds represents a novel and promising strategy. Although its inhibitory effect on P. expansum has been reported, the impact of these proteins on patulin production has been scarcely studied, pointing to a possible patulin overproduction. The aim of this work was to evaluate the effect of the antifungal protein PgAFP on the proteome and patulin biosynthesis of P. expansum grown in apple-based agar, intending to decipher these effects without the apple in vivo physiological response to the fungal infection. PgAFP increased the production of patulin on three of the five P. expansum strains evaluated. The proteome of the PgAFP-treated P. expansum showed five proteins involved in patulin biosynthesis in higher abundance (fold change 2.8-9.8), as well as proteins related to pathogenicity and virulence that suggest lower ability to infect fruits. Additionally, several proteins associated with oxidative stress, such as glutathione peroxidase, redoxin, or heat shock proteins were found in higher abundance, pointing to a response against oxidative stress elicited by PgAFP. These results provide evidence to be cautious in applying this antifungal protein in apples, being of utmost relevance to provide knowledge about the global response of P. expansum against an antifungal protein with many shared characteristics with others. These findings significantly contribute to future studies of assessment and suitability of not only these antifungal proteins but also new antifungal compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijfoodmicro.2021.109511 | DOI Listing |
FEMS Yeast Res
January 2025
Amity Institute of Integrative Science and Health, Amity University Haryana, Gurugram, 122413, India.
Drug resistance mechanisms in human pathogenic Candida species are constantly evolving. Over time, these species have developed diverse strategies to counter the effects of various drug classes, making them a significant threat to human health. In addition to well-known mechanisms such as drug target modification, overexpression, and chromosome duplication, Candida species have also developed permeability barriers to antifungal drugs through reduced drug import or increased efflux.
View Article and Find Full Text PDFPituitary
January 2025
Division of Endocrinology, Santiago de Compostela University and Ciber OBN, Santiago, Spain.
Purpose: A recent update of consensus guidelines for the management of Cushing's disease (CD) included indications for medical therapy. However, there is limited evidence regarding their implementation in clinical practice. This study aimed to evaluate current medical therapy approaches by expert pituitary centers through an audit conducted to validate the criteria of Pituitary Tumors Centers of Excellence (PTCOEs) and provide an initial standard of medical care for CD.
View Article and Find Full Text PDFBMJ Open
January 2025
Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK.
Introduction: Graft-versus-host disease (GvHD) remains a major complication of allogeneic stem cell transplantation (allo-SCT), affecting 30-70% of patients (representing 800 new patients per year in the UK). The risk is higher in patients undergoing unrelated allo-SCT. About 1 in 10 patients die as a result of GvHD or through complications of its treatment.
View Article and Find Full Text PDFN Biotechnol
January 2025
Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; Department of Bioengineering, Imperial College London, South Kensington Campus, SSW7 2AZ, London, UK. Electronic address:
Fungal pathogens pose a threat to human health and food security. Few antifungals are available and resistance to all has been reported. Novel strategies to control plant and human pathogens as well as food spoilers are urgently required.
View Article and Find Full Text PDFPlant J
January 2025
National Key Laboratory of Crop improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
DREB1A, a pivotal transcription factor, has long been known to regulate plant abiotic stress tolerance. However, its role in plant biotic stress tolerance and the underlying mechanisms have remained a mystery. Our research reveals that the maize ZmDREB1A gene is up-regulated in maize seedlings when the plants are infected by Rhizoctonia solani (R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!