In quantum systems, coherent superpositions of electronic states evolve on ultrafast time scales (few femtoseconds to attoseconds; 1 attosecond = 0.001 femtoseconds = 10 seconds), leading to a time-dependent charge density. Here we performed time-resolved measurements using attosecond soft x-ray pulses produced by a free-electron laser, to track the evolution of a coherent core-hole excitation in nitric oxide. Using an additional circularly polarized infrared laser pulse, we created a clock to time-resolve the electron dynamics and demonstrated control of the coherent electron motion by tuning the photon energy of the x-ray pulse. Core-excited states offer a fundamental test bed for studying coherent electron dynamics in highly excited and strongly correlated matter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.abj2096 | DOI Listing |
Phys Rev Lett
December 2024
School of Physics and Electronics, Hunan University, Changsha 410082, China.
Electron-hole exchange interaction in two-dimensional transition metal dichalcogenides is extremely strong due to the dimension reduction, which promises valley-superposed excitonic states with linearly polarized optical emissions. However, strong circular polarization reflecting valley-polarized excitonic states is commonly observed in helicity-resolved optical experiments. Here, we present a non-Hermitian theory of valley excitons by incorporating optical pumping and intrinsic decay, which unveils an anomalous valley-polarized excitonic state with elliptically polarized optical emission.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel; Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel; and The Helen Diller Quantum Center, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Attosecond observations of coherent electron dynamics in molecules and nanostructures can be achieved by combining conventional scanning tunneling microscopy (STM) with ultrashort femtosecond laser pulses. While experimental studies in the subcycle regime are under way, a robust strong-field theory description has remained elusive. Here we devise a model based on the strong-field approximation.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Rutgers University, Newark, New Jersey 07102, USA.
Electronic coherences are key to understanding and controlling photoinduced molecular transformations. We identify a crucial quantum-mechanical feature of electron-nuclear correlation, the projected nuclear quantum momenta, essential to capture the correct coherence behavior. For simulations, we show that, unlike traditional trajectory-based schemes, exact-factorization-based methods approximate these correlation terms and correctly capture electronic coherences in a range of situations, including their spatial dependence, an important aspect that influences subsequent electron dynamics and that is becoming accessible in more experiments.
View Article and Find Full Text PDFIUCrJ
January 2025
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
We report the use of streaming data interfaces to perform fully online data processing for serial crystallography experiments, without storing intermediate data on disk. The system produces Bragg reflection intensity measurements suitable for scaling and merging, with a latency of less than 1 s per frame. Our system uses the CrystFEL software in combination with the ASAP::O data framework.
View Article and Find Full Text PDFBiosci Rep
December 2024
Universidade Nova de Lisboa Instituto de Tecnologia Quimica e Biologica Antonio Xavier, Oeiras e São Julião da Barra, Portugal.
Multicentre redox proteins participate in diverse metabolic processes, such as redox shuttling, multielectron catalysis, or long-distance electron conduction. The detail in which these processes can be analysed depends on the capacity of experimental methods to discriminate the multiple microstates that can be populated while the protein changes from the fully reduced to the fully oxidized state. The population of each state depends on the redox potential of the individual centres and on the magnitude of the interactions between the individual redox centres with their neighbours.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!