The main aim of this study is to examine the effect of incorporating limestone fine (LF) on chemical shrinkage of pastes and mortars. For this purpose, five paste and five mortar mixes were prepared with 0, 5, 10, 15, and 20% (by weight) LF as a replacement of cement. The water-to-binder (w/b) ratio was 0.45 for all mixes. The sand-to-binder (s/b) ratio in the mortar mixes was 2. Testing included chemical shrinkage, compressive strength, density, and ultrasonic pulse velocity (UPV). Chemical shrinkage was tested each hour for the first 24 h, and thereafter each 2 days until a total period of 90 days. Furthermore, compressive strength and UPV tests were conducted at 1 day, 7, 28, and 90 days of curing. The results show that the long-term chemical shrinkage of pastes was found to increase with the increase in LF content up to 15%. Beyond this level of replacement, the chemical shrinkage started to decrease. However, the chemical shrinkage for mortars increased with the increase in LF content up to 10% LF and a decrease was observed beyond this level. It was also noticed that compressive strength for pastes and mortars attained the highest value for mixes containing 10 and 15% LF. The trend in the UPV results is somewhat similar to those of strength. Density for pastes and mortars increased up to 15% LF followed by a decrease at 20% replacement level. Correlations between the various properties were conducted. It was found that an increase in chemical shrinkage led to an increase in compressive strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-18496-5 | DOI Listing |
Environ Toxicol
January 2025
Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
Roundup is one of the most widely used glyphosate-based harmful herbicides in the United States as well as globally, which poses a severe risk for terrestrial and aquatic organisms. In order to identify the detrimental effects of Roundup exposure in aquatic organisms, we investigated the environmentally relevant concentrations of Roundup exposure (low dose: 0.5 μg/L and high dose: 5.
View Article and Find Full Text PDFBMJ Open
January 2025
Division of Pulmonary and Critical Care, Mayo Clinic, Rochester, Minnesota, USA
Introduction: Propofol is a widely used sedative-hypnotic agent for critically ill patients requiring invasive mechanical ventilation (IMV). Despite its clinical benefits, propofol is associated with increased risks of hypertriglyceridemia. Early identification of patients at risk for propofol-associated hypertriglyceridemia is crucial for optimising sedation strategies and preventing adverse outcomes.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Design and Automation, Vellore Institute of Technology, School of Mechanical Engineering, Vellore Institute of Technology, Thiruvalluvar Road, Katpadi, Vellore, Tamil Nadu, 632014, INDIA.
Calcium phosphate (CaP)-based bioscaffolds are used for bone tissue regeneration because of their physical and chemical resemblance to human bone. Calcium, phosphate, sodium, potassium, magnesium, and silicon are important components of human bone. The successful biomimicking of human bone characteristics involves incorporating all the human bone elements into the scaffold material.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium.
The next generation of soft electronics will expand to the third dimension. This will require the integration of mechanically compliant 3D functional structures with stretchable materials. Here, omnidirectional direct ink writing (DIW) of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) aerogels with tunable electrical and mechanical performance is demonstrated, which can be integrated with soft substrates.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!