A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recent developments in the biology and biotechnological applications of halotolerant yeasts. | LitMetric

Recent developments in the biology and biotechnological applications of halotolerant yeasts.

World J Microbiol Biotechnol

Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Dr. Moliner 50, 46100, Burjassot, València, Spain.

Published: January 2022

Natural hypersaline environments are inhabited by an abundance of prokaryotic and eukaryotic microorganisms capable of thriving under extreme saline conditions. Yeasts represent a substantial fraction of halotolerant eukaryotic microbiomes and are frequently isolated as food contaminants and from solar salterns. During the last years, a handful of new species has been discovered in moderate saline environments, including estuarine and deep-sea waters. Although Saccharomyces cerevisiae is considered the primary osmoadaptation model system for studies of hyperosmotic stress conditions, our increasing understanding of the physiology and molecular biology of halotolerant yeasts provides new insights into their distinct metabolic traits and provides novel and innovative opportunities for genome mining of biotechnologically relevant genes. Yeast species such as Debaryomyces hansenii, Zygosaccharomyces rouxii, Hortaea werneckii and Wallemia ichthyophaga show unique properties, which make them attractive for biotechnological applications. Select halotolerant yeasts are used in food processing and contribute to aromas and taste, while certain gene clusters are used in second generation biofuel production. Finally, both pharmaceutical and chemical industries benefit from applications of halotolerant yeasts as biocatalysts. This comprehensive review summarizes the most recent findings related to the biology of industrially-important halotolerant yeasts and provides a detailed and up-to-date description of modern halotolerant yeast-based biotechnological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-021-03213-0DOI Listing

Publication Analysis

Top Keywords

halotolerant yeasts
20
biotechnological applications
12
applications halotolerant
8
halotolerant
7
yeasts
6
developments biology
4
biology biotechnological
4
applications
4
yeasts natural
4
natural hypersaline
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!