Radiolytic synthesis and characterization of selenium nanoparticles: comparative biosafety evaluation with selenite and ionizing radiation.

World J Microbiol Biotechnol

Laboratório de Radiobiologia, Serviço de Radiofármacos (SERFA) Centro de Desenvolvimento da Tecnologia Nuclear/Comissão Nacional de Energia Nuclear (CDTN/CNEN), Cx Postal 0941, Belo Horizonte, MG, CEP 30161-970, Brazil.

Published: January 2022

The goal of this work is use a green chemistry route to synthesize selenium nanoparticles (SeNPs) that do not trigger oxidative stress, typical of metallic, oxide metallic and carbonaceous nanostructures, and supply the same beneficial effects as selenium nanostructures. SeNPs were synthesized using a radiolytic method involving irradiating a solution containing sodium selenite (Se) as the precursor in 1% Yeast extract, 2% Peptone, 2% Glucose (YPG) liquid medium with gamma-rays (Cobalt). The method did not employ any hazardous reducing agents. Saccharomyces cerevisiae cells were incubated with 1 mM SeNPs for 24 h and/or then challenged with 400 Gy of ionizing radiation were assessed for viability and biomarkers of oxidative stress: lipid peroxidation, protein carbonylation, free radical generation, and total sulfhydryl content. Spherical SeNPs with variable diameters (from 100 to 200 nm) were formed after reactions of sodium selenite with hydrated electrons (e) and hydrogen radicals (H·). Subsequent structural characterizations indicated an amorphous structure composed of elemental selenium (Se). Compared to 1 mM selenite, SeNPs were considered safe and less toxic to Saccharomyces cerevisiae cells as did not elicit significant modifications in cell viability or oxidative stress parameters except for increased protein carbonylation. Furthermore, SeNPs treatment afforded some protection against ionizing radiation exposure. SeNPs produced using green chemistry attenuated the reactive oxygen species generation after in vitro ionizing radiation exposure opens up tremendous possibilities for radiosensitizer development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-021-03218-9DOI Listing

Publication Analysis

Top Keywords

ionizing radiation
16
oxidative stress
12
selenium nanoparticles
8
green chemistry
8
sodium selenite
8
saccharomyces cerevisiae
8
cerevisiae cells
8
protein carbonylation
8
radiation exposure
8
senps
7

Similar Publications

Background: Endodontic treatment aims in the preservation of extremely carious primary teeth. For root canal therapy to be successful, root canals must be properly prepared and effectively irrigated .Therefore, it is necessary to select the proper root canal disinfection method to preserve the primary tooth.

View Article and Find Full Text PDF

NVP-AUY922 relieves radiation-induced intestinal injury via regulating EPHX1.

Life Sci

January 2025

Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.

As a common side effect of radiotherapy, radiation-induced intestinal injury (RIII) greatly affects the prognosis of patients and the efficacy of radiotherapy. Current therapeutic strategies for RIII are still very limited. Thus, the identification of effective radioprotective agents is of great importance.

View Article and Find Full Text PDF

Plants will form the basis of artificial ecosystems in space exploration and the creation of bases on other planets. Astrophysical factors, such as ionizing radiation (IR), magnetic fields (MF) and gravity, can significantly affect the growth and development of plants beyond Earth. However, to date, the ways in which these factors influence plants remain largely unexplored.

View Article and Find Full Text PDF

Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs).

View Article and Find Full Text PDF

: Hysterosalpingography (HSG) is pivotal in delineating tubal pathology, but is associated with pain and exposure to ionizing radiation. This study investigated which reproductive factors predict HSG-identified tubal pathology. : From May 2016 to August 2023, 3322 infertile females with HSG (mean age 33.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!