Environ Monit Assess
Department of Economics, Shahjalal University of Science & Technology, Sylhet-3114, Bangladesh.
Published: January 2022
This article evaluates the impact of upstream water withdrawal on downstream land use and livelihood changes in the Teesta River basin, using a combination of geospatial and social data. Results show that water bodies gradually decreased, indicating a low volume of water discharge from upstream of the Teesta River basin due to the construction of several barrages. During the study period, a significant change in the area of water bodies was observed between 2012 and 2016, from 881 to 1123 Ha, respectively. The cropland area increased because farmers changed their cropping practice due to water scarcity and floods. Trend analyses of riverbank erosion and accretion patterns suggest an increase in accretion rates compared to the rate of riverbank erosion. A household survey was conducted using a self-administered questionnaire where 450 respondents have participated (farmers: 200 and fishermen: 250). Survey results show that most of the farmers (65.5%) and fishermen (76.8%) think that the construction of upstream barrages caused harm to them. The majority of farmers and fishermen feel water scarcity, mainly in the dry season. We found that a large number of participants in the study area are willing to change their occupations. Furthermore, participants observed that many local people are migrating or willing to migrate to other places nowadays. Our study also found that farmers who face water scarcity in their area are more likely to change their location than their counterparts, while those who face problems in their cultivation are less likely to move. On the other hand, upstream barrages, fishing effects, and getting support in crisis significantly predict fishermen's occupation changes. We believe our results provide essential information on the significance of transboundary water-sharing treaties, sustainable water resource management, and planning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-021-09726-3 | DOI Listing |
Water Res
January 2025
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Neuglobsow 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany.
Microplastics (MP), plastic particles <5 mm, are of global concern due to their worldwide distribution and potential repercussions on ecosystems and human well-being. In this study, MP were collected from the urbanized Susurluk basin in Türkiye to evaluate their vector function for bacterial biofilms, both in the wet and dry seasons. Bacterial biofilms were predominantly found on polyethylene (PE), polypropylene (PP), and polystyrene (PS), which constitute the most common MP types in the region.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Xi'an Key Laboratory of Environmental Simulation and Ecological Health in the Yellow River Basin, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China; Yellow River Institute of Shaanxi Province, Northwest University, Xi'an, 710127, China.
Different speciation of phosphorus in the hyporheic zone exhibit various release potentials, so as to control the phosphorus content in the overlying water. The process of phosphorus release under the multi-factor coupling of rivers is crucial for understanding the element cycle in complex environments. In this paper, the Weihe River in China was used as a case study to analyze the phosphorus speciation and distribution of overlying water and sediments in the hyporheic zone, and the phosphorus release process of sediments under the coupling of multiple factors.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China. Electronic address:
Neonicotinoid pesticides (NNs) are increasingly used in agriculture, which may pose significant threats to aquatic organisms in receiving rivers. However, no studies have explored their entire process from application and transport to receptors within river basins. Here, we estimated the usage and loss of NNs in the Dongting Lake Basin in China using modeling approaches, and assessed NNs-associated aquatic ecological risks.
View Article and Find Full Text PDFEcol Appl
January 2025
U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Jackson, Mississippi, USA.
Subsidy-stress gradients offer a useful framework for understanding ecological responses to perturbation and may help inform ecological metrics in highly modified systems. Historic, region-wide shifts from bottomland hardwood forest to row crop agriculture can cause positively skewed impact gradients in alluvial plain ecoregions, resulting in tolerant organisms that typically exhibit a subsidy response (increased abundance in response to environmental stressors) shifting to a stress response (declining abundance at higher concentrations). As a result, observed biological tolerance in modified ecosystems may differ from less modified regions, creating significant challenges for detecting biological responses to restoration efforts.
View Article and Find Full Text PDFNeotrop Entomol
January 2025
Lab of Environmental Sciences and Biodiversity, Univ Estadual do Maranhão, São Luís, Maranhão, Brazil.
The diverse ecosystems of the Amazon biome play a vital role in the maintenance of biodiversity and delivering essential ecosystem services at both local and global levels. Small-bodied generalist insects, such as those from the order Odonata, contribute significantly to these services and are recognized as sensitive bioindicators of environmental quality. The present study evaluated the diversity and distribution of adult odonates in the Legal Amazonia zone of the Brazilian state of Maranhão, to identify the key environmental drivers shaping local odonate communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.