Herein, we report the transmission electron microscopy observation of the deformation and fracture processes of an epoxy resin thin film containing silica nanoparticles under tensile strain. Under tensile strain, the dispersed silica nanoparticles in the composite arrest the progress of the crack tip and prevent crack propagation. Concomitantly, the generation and growth of nanovoids at the epoxy matrix/nanoparticle interfaces were clearly observed, particularly in the region near the crack tip. These nanovoids contribute to the dissipation of fracture energy, thereby enhancing the fracture toughness. We also analyzed the local distributions of the true strain and strain rate in the nanocomposite film during tensile testing using the digital image correlation method. In the region around the crack tip, the strain rate increased by 3 to 10 times compared to the average of the entire test specimen. However, the presence of large filler particles in the growing crack suppressed the generation of strain, potentially contributing to hindering crack growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1sm01452h | DOI Listing |
Discov Nano
January 2025
Nuclear and Energy Research Institute, IPEN, CNEN/SP, Av. Prof. Lineu Prestes, 2242, São Paulo, SP, CEP05508-000, Brazil.
Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.
View Article and Find Full Text PDFNat Mater
January 2025
Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.
Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.
View Article and Find Full Text PDFHamostaseologie
January 2025
Center for Clinical Transfusion Medicine Tuebingen, Tuebingen, Germany.
In this article, our goal is to offer an introduction and overview of the diagnostic approach to inherited platelet function defects (iPFDs) for clinicians and laboratory personnel who are beginning to engage in the field. We describe the most commonly used laboratory methods and propose a diagnostic four-step approach, wherein each stage requires a higher level of expertise and more specialized methods. It should be noted that our proposed approach differs from the ISTH Guidance on this topic in some points.
View Article and Find Full Text PDFLangmuir
January 2025
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin RD, Shanghai 200234, China.
Ascorbyl tetraisopalmitate (VC-IP) is a novel form of ascorbic acid characterized by reduced water solubility due to complete acylation with palmitate. This study investigated the potential cosmetic application of VC-IP when encapsulated in lyotropic liquid crystal nanoparticles (VC-IP LCNPs) by using a high-pressure homogenization (HPH) method. The particle size, zeta potential, and polydispersity index (PDI) of the obtained VC-IP LCNPs were determined as 158.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.
As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!