Vitamin D and the Immune System in Menopause: A Review.

J Menopausal Med

Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea.

Published: December 2021

Menopause is a normal phenomenon in a woman's life cycle involving multiple health-related issues that contribute to physical instability. Changes in the immune system in postmenopausal women are caused by estrogen deprivation along with age. Increased proinflammatory serum marker levels, cytokine responses in body cells, decreased CD4 T and B lymphocyte levels, and natural killer cell cytotoxic activity are also observed during postmenopause. Moreover, vitamin D, in addition to its classical effects on calcium homeostasis and bone density, plays an important role. Current evidence indicates that vitamin D regulates innate and adaptive immune responses; however, vitamin D deficiency is linked to increased autoimmune activity and infection susceptibility. This review provides an overview of the consequences of immune alterations as an outcome of aging in postmenopausal women and the benefit of vitamin D supplementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8738846PMC
http://dx.doi.org/10.6118/jmm.21011DOI Listing

Publication Analysis

Top Keywords

immune system
8
postmenopausal women
8
vitamin
5
vitamin immune
4
system menopause
4
menopause review
4
review menopause
4
menopause normal
4
normal phenomenon
4
phenomenon woman's
4

Similar Publications

PMA1-containing extracellular vesicles of triggers immune responses and colitis progression.

Gut Microbes

December 2025

Department of Oncology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

() exhibits aberrant changes in patients with colitis, and it has been reported to dominate the colonic mucosal immune response. Here, we found that PMA1 expression was significantly increased in from patients with IBD compared to that in healthy controls. A Crispr-Cas9-based fungal strain editing system was then used to knock out PMA1 expression in .

View Article and Find Full Text PDF

Fibroblasts, non-hematopoietic cells of mesenchymal origin, are tissue architects which regulate the topography of tissues, dictate tissue resident cell types, and drive fibrotic disease. Fibroblasts regulate the composition of the extracellular matrix (ECM), a 3-dimensional network of macromolecules that comprise the acellular milieu of tissues. Fibroblasts can directly and indirectly regulate immune responses by secreting ECM and ECM-bound molecules to shape tissue structure and influence organ function.

View Article and Find Full Text PDF

L. fruits and leaf extracts have a broad range of immunomodulatory, anti-inflammatory, and antioxidant effects; however, their effects on cardiac protection have not been investigated. The study aims to test the biological activity of L.

View Article and Find Full Text PDF

-Formyl peptide receptors (FPRs) are membrane receptors that are abundantly expressed in innate immune cells, including neutrophils and platelets, demonstrating potential new targets for immune system regulation and the treatment of inflammatory conditions. We report here the development and bio-physical validation of new FPR imaging agents as effective tools to track FPR distribution, localisation and functions, ultimately helping to establish FPR exact roles and functions in pathological and physiological conditions. The new series of probes feature a small molecule-based FPR address system conjugated to suitable fluorophores, resulting in highly specific FPR agents, including a partial agonist endowed with high affinity ( low/sub-nanomolar potency) on FPR-transfected cells and human neutrophils.

View Article and Find Full Text PDF

Biological sex is closely associated with the properties and extent of the immune response, with males and females showing different susceptibilities to diseases and variations in immunity. Androgens, predominantly in males, generally suppress immune responses, while estrogens, more abundant in females, tend to enhance immunity. It is also established that sex hormones at least partially explain sex biases in different diseases, particularly autoimmune diseases in females.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!