Computational studies to identify the common type-I and type-II inhibitors against the CDK8 enzyme.

J Cell Biochem

School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.

Published: March 2022

In this study, multicomplex-based pharmacophore modeling was conducted on the structural proteome of the two states of CDK8 protein, that is, DMG-in and out. Three pharmacophores having six, five, and four features were selected as the representative models to conduct the virtual screening process using the prepared drug-like natural product database. The screened candidates were subjected to molecular docking studies on DMG-in (5XS2) and out (4F6U) conformation of the CDK8 protein. Subsequently, the common four docked candidates of 5XS2 and 4F6U were selected to perform the molecular dynamics simulation studies. Apart from one of the complexes of DMG-in (5XS2-UNPD163102), all other complexes displayed stable dynamic behavior. The interaction and stability studies of the docked complexes were compared with the references selected from the two conformations (DMG-in and out) of the protein. The current work leads to the identification of three common DMG-in and out hits with diverse scaffolds which can be employed as the initial leads for the design of the novel CDK8 inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.30209DOI Listing

Publication Analysis

Top Keywords

cdk8 protein
8
5xs2 4f6u
8
dmg-in
5
computational studies
4
studies identify
4
identify common
4
common type-i
4
type-i type-ii
4
type-ii inhibitors
4
cdk8
4

Similar Publications

Pulmonary fibrosis (PF) is a high-mortality lung disease with limited treatment options, highlighting the need for new therapies. Cyclin-dependent kinase 8 (CDK8) is a promising target due to its role in regulating transcription via the TGF-β/Smad pathway, though CDK8 inhibitors have not been thoroughly studied for PF. This study aims to evaluate the potential of E966-0530-45418, a novel CDK8 inhibitor, in mitigating PF progression and explores its underlying mechanisms.

View Article and Find Full Text PDF

Transcriptional coupling of telomeric retrotransposons with the cell cycle.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA.

Unlike most species that use telomerase for telomere maintenance, many dipterans, including , rely on three telomere-specific retrotransposons (TRs)-, , and -to form tandem repeats at chromosome ends. Although TR transcription is crucial in their life cycle, its regulation remains poorly understood. This study identifies the Mediator complex, E2F1-Dp, and Scalloped/dTEAD as key regulators of TR transcription.

View Article and Find Full Text PDF

Pulmonary fibrosis is excessive scarring of the lung tissues. Transforming growth factor-beta (TGF-β) has been implicated in pulmonary fibrosis due to its ability to induce the epithelial-to-mesenchymal transition (EMT) and promote epithelial cell migration. Cyclin-dependent kinase 8 (CDK8) can mediate the TGF-β signaling pathways and could function as an alternative therapeutic target for treating pulmonary fibrosis.

View Article and Find Full Text PDF

SAYP and Bap170, subunits of the SWI/SNF remodeling complex, have the ability to support enhancer-dependent transcription when artificially recruited to the promoter on a transgene. We found that the phenomenon critically depends on two subunits of the Mediator kinase module, Med12 and Med13 but does not require the two other subunits of the module (Cdk8 and CycC) or other subunits of the core part of the complex. A cooperation of the above proteins in active transcription was also observed at endogenous loci, but the contribution of the subunits to the activity of a particular gene differed in different loci.

View Article and Find Full Text PDF

CDK8 inhibitor KY-065 rescues skeletal abnormalities in achondroplasia model mice.

Biochim Biophys Acta Mol Basis Dis

December 2024

Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University, Gifu 501-1196, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1196, Japan; Center for One Medicine Innovative Translational Research (COMIT), Division of Innovative Modality Development, Gifu University, Gifu 501-1196, Japan. Electronic address:

Article Synopsis
  • CDK8 is essential for bone health, and its inhibitor KY-065 has shown potential in preventing postmenopausal osteoporosis in mice.
  • KY-065 has also been found to improve bone growth and chondrogenesis in a mouse model of achondroplasia (the most common form of genetic dwarfism), by targeting the STAT1 signaling pathway without affecting MAPK activation.
  • The results suggest that CDK8 in chondrocytes could be a new target for treatment, with KY-065 emerging as a promising drug for achondroplasia.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!