To advance the understanding of the dynamic relationship between brain activities and emotional experiences, we examined the neural patterns of tension, a unique emotion that highly depends on how an event unfolds. Specifically, the present study explored the temporal relationship between functional connectivity patterns within and between different brain functional modules and the fluctuation in tension during film watching. Due to the highly contextualized and time-varying nature of tension, we expected that multiple neural networks would be involved in the dynamic tension experience. Using the neuroimaging data of 546 participants, we conducted a dynamic brain analysis to identify the intra- and inter-module functional connectivity patterns that are significantly correlated with the fluctuation of tension over time. The results showed that the inter-module connectivity of cingulo-opercular network, fronto-parietal network, and default mode network is involved in the dynamic experience of tension. These findings demonstrate a close relationship between brain functional connectivity patterns and emotional dynamics, which supports the importance of functional connectivity dynamics in understanding our cognitive and emotional processes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11682-021-00593-7DOI Listing

Publication Analysis

Top Keywords

functional connectivity
20
fluctuation tension
12
connectivity patterns
12
connectivity dynamics
8
tension film
8
film watching
8
relationship brain
8
brain functional
8
involved dynamic
8
tension
7

Similar Publications

Tailoring rhodium-based metal-organic layers for parahydrogen-induced polarization: achieving 20% polarization of H in liquid phase.

Natl Sci Rev

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Heterogeneous catalysts for parahydrogen-induced polarization (HET-PHIP) would be useful for producing highly sensitive contrasting agents for magnetic resonance imaging (MRI) in the liquid phase, as they can be removed by simple filtration. Although homogeneous hydrogenation catalysts are highly efficient for PHIP, their sensitivity decreases when anchored on porous supports due to slow substrate diffusion to the active sites and rapid depolarization within the channels. To address this challenge, we explored 2D metal-organic layers (MOLs) as supports for active Rh complexes with diverse phosphine ligands and tunable hydrogenation activities, taking advantage of the accessible active sites and chemical adaptability of the MOLs.

View Article and Find Full Text PDF

Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.

View Article and Find Full Text PDF

Purpose Pre-clinical studies have demonstrated direct influences of the autonomic nervous system (ANS) on the immune system. However, it remains unknown if connections between the peripheral ANS and immune system exist in humans and contribute to the development of chronic inflammatory disease. This study had three aims: 1.

View Article and Find Full Text PDF

The global outbreak of COVID-19, caused by the SARS-CoV-2 virus, has been linked to long-term neurological complications, including an increased risk of Alzheimer's disease (AD) among older adults. However, the precise genetic impact of COVID-19 on long-term AD development remains unclear. This study leveraged genome-wide association study (GWAS) data and genotype data to explore the genetic association between AD and various COVID-19 phenotypes across European ancestry (EA) and African ancestry (AA) cohorts, and the possibility of a causal effect of COVID-19 on AD.

View Article and Find Full Text PDF

Characterizing brain dynamic functional connectivity (dFC) patterns from functional Magnetic Resonance Imaging (fMRI) data is of paramount importance in neuroscience and medicine. Recently, many graph neural network (GNN) models, combined with transformers or recurrent neural networks (RNNs), have shown great potential for modeling the dFC patterns. However, these methods face challenges in effectively characterizing the modularity organization of brain networks and capturing varying dFC state patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!