Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study presents the development of a sustainable production process of environmentally benign silver nanoparticles (AgNPs) from aqueous root extract of Rhodiola imbricata (RI) and Withania somnifera (WS) for mitigating environmental pollution and investigating their potential applications in agriculture and biomedical industry. RIWS-AgNPs were characterized using several analytical techniques (UV-Vis, DLS, HR-TEM, SAED, EDX and FTIR). The antioxidant and anticancer activity of RIWS-AgNPs were estimated by DPPH and MTT assay, respectively. UV-Vis and DLS analysis indicated that equal ratio of RIWS-extract and silver nitrate (1:1) is optimum for green synthesis of well-dispersed AgNPs (λ: 430 nm, polydispersity index: 0.179, zeta potential: - 17.9 ± 4.14). HR-TEM and SAED analysis confirmed the formation of spherical and crystalline RIWS-AgNPs (37-42 nm). FTIR analysis demonstrated that the phenolic compounds are probably involved in stabilization of RIWS-AgNPs. RIWS-AgNPs showed effective catalytic degradation of hazardous environmental pollutant (4-nitrophenol). RIWS-AgNPs treatment significantly increased the growth and photosynthetic pigments of Hordeum vulgare in a size- and dose-dependent manner (germination (77%), chlorophyll a (12.62 ± 0.07 μg/ml) and total carotenoids (7.05 ± 0.04 μg/ml)). The DPPH assay demonstrated that RIWS-AgNPs exert concentration-dependent potent antioxidant activity (IC: 12.30 μg/ml, EC: 0.104 mg/ml, ARP: 959.45). Moreover, RIWS-AgNPs also confer strong cytotoxic activity against HepG2 cancer cell line in dose-dependent manner (cell viability: 9.51 ± 1.55%). Overall, the present study for the first time demonstrated a green technology for the synthesis of stable RIWS-AgNPs and their potential applications in biomedical and agriculture industry as phytostimulatory, antioxidant and anticancer agent. Moreover, RIWS-AgNPs could potentially be used as a green alternative for environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-021-02666-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!