Purpose: Targeted therapy in cancer researches is a promising approach that can resolve drawbacks of systematic therapeutics. Nanobodies are potent therapeutics due to their high specificity and affinity to the target.
Methods: In this study, we evaluated the effect of the combination of anti-vascular endothelial growth factor receptor 2 (anti-VEGFR2) and anti-neuropilin-1 (anti-NRP1) nanobodies both in vitro (MTT, and tube formation assay) and in vivo (chick chorioallantoic membrane (CAM), and Nude mice treatment assay).
Results: Our results showed that the combination of two nanobodies (anti-VEGFR2/NRP-1 nanobodies) significantly inhibited proliferation as well as tube formation of human endothelial cells effective than a single nanobody. In addition, the mixture of both nanobodies inhibited vascularization of chick chorioallantoic membrane ex ovo CAM assay as compared to a single nanobody. Moreover, the mixture of both nanobodies significantly inhibited tumor growth of the mice (tumor volume and weight) higher than individual nanobodies (P < 0.05).
Conclusion: Our results offer a promising role of combination therapies in cancer therapy as well as angiogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00280-021-04372-5 | DOI Listing |
Nat Commun
January 2025
Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
Sphingosine-1-phosphate (S1P) is a signaling lysolipid critical to heart development, immunity, and hearing. Accordingly, mutations in the S1P transporter SPNS2 are associated with reduced white cell count and hearing defects. SPNS2 also exports the S1P-mimicking FTY720-P (Fingolimod) and thereby is central to the pharmacokinetics of this drug when treating multiple sclerosis.
View Article and Find Full Text PDFJ Immunother Cancer
December 2024
Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
Objective: Targeting CD47 for cancer immunotherapy has been studied in many clinical trials for the treatment of patients with advanced tumors. However, this therapeutic approach is often hampered by on-target side effects, physical barriers, and immunosuppressive tumor microenvironment (TME).
Methods: To improve therapeutic efficacy while minimizing toxicities, we engineered an oncolytic vaccinia virus (OVV) encoding an anti-CD47 nanobody (OVV-αCD47nb).
Biomater Res
December 2024
Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China.
Glioblastoma multiforme (GBM) is among the most challenging malignant brain tumors, making the development of new treatment strategies highly necessary. Glioma stem cells (GSCs) markedly contribute to drug resistance, radiation resistance, and tumor recurrence in GBM. The therapeutic potential of nanomaterials targeting GSCs in GBM urgently needs to be explored.
View Article and Find Full Text PDFIran J Immunol
December 2024
Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Background: Developing effective targeted treatment approaches to overcome drug resistance remains a crucial goal in cancer research. Immunotoxins have dual functionality in cancer detection and targeted therapy.
Objective: This study aimed to engineer a recombinant chimeric fusion protein by combining a nanobody-targeting domain with an exotoxin effector domain.
J Microencapsul
December 2024
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
This study aimed to encapsulate an anti-VEGF nanobody (Nb) within niosome nanoparticles (NNPs) to enhance its circulation half life. Key parameters such as encapsulation efficiency, stability, Nb release, cytotoxicity, and cell migration inhibition in HUVEC cells were evaluated, along with pharmacokinetic studies in mice. Nb-loaded NNPs (Nb-NNPs) were successfully prepared with an encapsulation efficiency of 78.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!