The Aquatic Invertebrate Releases Molecular Messages Through Extracellular Vesicles.

Front Cell Dev Biol

Istituto di Scienze Applicate e Sistemi Intelligenti "E. Caianiello", Consiglio Nazionale Delle Ricerche, Pozzuoli, Italy.

Published: December 2021

Recent body of evidence demonstrates that extracellular vesicles (EVs) represent the first language of cell-cell communication emerged during evolution. In aquatic environments, transferring signals between cells by EVs offers protection against degradation, allowing delivering of chemical information in high local concentrations to the target cells. The packaging of multiple signals, including those of hydrophobic nature, ensures target cells to receive the same EV-conveyed messages, and the coordination of a variety of physiological processes across cells of a single organisms, or at the population level, i.e., mediating the population's response to changing environmental conditions. Here, we purified EVs from the medium of the freshwater invertebrate , and the molecular profiling by proteomic and transcriptomic analyses revealed multiple markers of the exosome EV subtype, from structural proteins to stress induced messages promoting cell survival. Moreover, positive and negative regulators of the Wnt/β-catenin signaling pathway, the major developmental pathway acting in body axial patterning, were identified. Functional analysis on amputated polyps revealed EV ability to modulate both head and foot regeneration, suggesting bioactivity of the EV cargo and opening new perspectives on the mechanisms of developmental signalling. Our results open the path to unravel EV biogenesis and function in all cnidarian species, tracing back the origin of the cell-cell, cross-species or cross-kingdom communication in aquatic ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721104PMC
http://dx.doi.org/10.3389/fcell.2021.788117DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
target cells
8
aquatic invertebrate
4
invertebrate releases
4
releases molecular
4
molecular messages
4
messages extracellular
4
vesicles body
4
body evidence
4
evidence demonstrates
4

Similar Publications

Quantitative Lipidomics of Biological Samples Using Supercritical Fluid Chromatography Mass Spectrometry.

Methods Mol Biol

January 2025

Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.

Lipidomics has attracted attention in the discovery of unknown biomolecules and for capturing the changes in metabolism caused by genetic and environmental factors in an unbiased manner. However, obtaining reliable lipidomics data, including structural diversity and quantification data, is still challenging. Supercritical fluid chromatography (SFC) is a suitable technique for separating lipid molecules with high throughput and separation efficiency.

View Article and Find Full Text PDF

Potential and development of cellular vesicle vaccines in cancer immunotherapy.

Discov Oncol

January 2025

Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China.

Cancer vaccines are promising as an effective means of stimulating the immune system to clear tumors as well as to establish immune surveillance. In this paper, we discuss the main platforms and current status of cancer vaccines and propose a new cancer vaccine platform, the cytosolic vesicle vaccine. This vaccine has a unique structure that can integrate antigen and adjuvant carriers to improve the delivery efficiency and immune activation ability, which brings new ideas for cancer vaccine design.

View Article and Find Full Text PDF

Ammonia is a product of amino acid metabolism that accumulates in the blood of patients with liver cirrhosis, leading to neurotoxic effects and hepatic encephalopathy (HE). HE manifestations can range from mild, subclinical disturbances in cognition, or minimal HE (mHE) to gross disorientation and coma, a condition referred to as overt HE. Many blood-based biomarkers reflecting these neurotoxic effects of ammonia and liver disease can be measured in the blood allowing the development of new biomarkers to diagnose cirrhosis patients at risk of developing HE.

View Article and Find Full Text PDF

Role of Acorus calamus extract in reducing exosome secretion by targeting Rab27a and nSMase2: a therapeutic approach for breast cancer.

Mol Biol Rep

January 2025

Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

Background: Exosomes are extracellular vesicles released by cells that mediate intercellular communication and actively participate in cancer progression, metastasis, and regulation of immune response within the tumour microenvironment. Inhibiting exosome release from cancer cells could be employed as a therapeutic against cancer.

Methods And Results: In the present study, we have studied the effects of Acorus calamus in inhibiting exosome secretion via targetting Rab27a and neutral sphingomyelinase 2 (nSMase2) in HER2-positive (MDA-MB-453), hormone receptor-positive (MCF-7) and triple-negative breast cancer (MDA-MB-231) cells.

View Article and Find Full Text PDF

Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!