Objective: There are no data on the effect of X-Ray irradiation to the vulnerable pelvic organs of babies during DDH follow-up. This study aims to calculate, for the first time, the radiation exposure to infants during follow-up for DDH harness treatment, and thus quantify the lifetime risk of malignancy.

Methods: Patients who had completed 5 years' follow-up following successful Pavlik harness treatment were identified from the hospital DDH database. The radiation dose was extracted from the Computerised Radiology Information System database for every radiograph of every patient. The effective dose (ED) was calculated using conversion coefficients for age, sex and body region irradiated. Cumulative ED was compared to Health Protection Agency standards to calculate lifetime risk of malignancy from the radiographs.

Results: All radiographs of 40 infants, successfully treated in Pavlik harness for DDH, were assessed. The mean number of AP pelvis radiographs was 7.00 (range: 6-9, mode: 7). The mean cumulative ED was 0.25 mSv (Range: 0.11-0.46, SD: 0.07). This is far lower than the 'safe' limit for healthcare workers of 20 mSv and is categorised as "Very Low Risk".

Conclusion: Clinicians involved in the treatment DDH can be re-assured that the cumulative radiation exposure from pelvic radiographs following Pavlik harness treatment is "Very Low Risk". Whilst being mindful of any radiation exposure in children, this study provides a scientific answer that help addresses parental concerns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8688633PMC
http://dx.doi.org/10.1007/s43465-021-00438-xDOI Listing

Publication Analysis

Top Keywords

harness treatment
16
radiation exposure
12
pavlik harness
12
pelvic radiographs
8
radiographs infants
8
lifetime risk
8
"very low
8
harness
5
treatment
5
radiation
5

Similar Publications

Unveiling diabetes onset: Optimized XGBoost with Bayesian optimization for enhanced prediction.

PLoS One

January 2025

Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Ad Diriyah, Riyadh, Kingdom of Saudi Arabia.

Diabetes, a chronic condition affecting millions worldwide, necessitates early intervention to prevent severe complications. While accurately predicting diabetes onset or progression remains challenging due to complex and imbalanced datasets, recent advancements in machine learning offer potential solutions. Traditional prediction models, often limited by default parameters, have been superseded by more sophisticated approaches.

View Article and Find Full Text PDF

Nanomaterials-Induced Pyroptosis: Advancing Novel Therapeutic Pathways in Nanomedicine.

Small Methods

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.

Pyroptosis, a form of programmed cell death characterized by cell lysis and inflammation, has significant implications for disease treatment. Nanomaterials (NMs), with their unique physicochemical properties, can precisely modulate pyroptosis, offering novel and intelligent therapeutic strategies for cancer, infectious diseases, and chronic inflammatory conditions with targeted activation and reduced systemic toxicity. This review explores the mechanisms by which NMs regulate pyroptosis, comparing molecular and NM inducers, and examines the role of intrinsic properties such as size, shape, surface charge, and chemical composition in these processes.

View Article and Find Full Text PDF

Turning Waste into Treasure: Functionalized Biomass-Derived Carbon Dots for Superselective Visualization and Eradication of Gram-Positive Bacteria.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.

Gram-positive bacteria pose significant threats to human health, necessitating the development of targeted bacterial detection and eradication strategies. Nevertheless, current approaches often suffer from poor targeting specificity. Herein, the study utilizes purple rice lixivium to synthesize biomass carbon dots (termed BCDs) with wheat germ agglutinin-like residues for precisely targeting Gram-positive bacteria.

View Article and Find Full Text PDF

Purpose: Preoperative virtual planning and osteosynthesis with patient-specific implants (PSIs) have become a quotidian approach to many maxillofacial elective surgery setups. When a process is well-organized, a similar approach can be harnessed to serve the needs of exact primary reconstructions, especially in midfacial trauma cases. PSI osteosynthesis of the mandible is, however, more challenging because a mirror technique of the facial sides is often unreliable due to inherent lack of symmetry, and movement of the mandible increases the risk of loosening of the osteosynthesis.

View Article and Find Full Text PDF

Integrating functional materials with photonic and optoelectronic technologies has revolutionized medical diagnostics, enhancing imaging and sensing capabilities. This review provides a comprehensive overview of recent innovations in functional materials, such as quantum dots, perovskites, plasmonic nanomaterials, and organic semiconductors, which have been instrumental in the development of diagnostic devices characterized by high sensitivity, specificity, and resolution. Their unique optical properties enable real-time monitoring of biological processes, advancing early disease detection and personalized treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!