Theoretical Relationship Between Two Measures of Spike Synchrony: Correlation Index and Vector Strength.

Front Neurosci

Computational Neuroscience, Department of Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany.

Published: December 2021

Information processing in the nervous system critically relies on temporally precise spiking activity. In the auditory system, various degrees of phase-locking can be observed from the auditory nerve to cortical neurons. The classical metric for quantifying phase-locking is the vector strength (VS), which captures the periodicity in neuronal spiking. More recently, another metric, called the correlation index (CI), was proposed to quantify the temporally reproducible response characteristics of a neuron. The CI is defined as the peak value of a normalized shuffled autocorrelogram (SAC). Both VS and CI have been used to investigate how temporal information is processed and propagated along the auditory pathways. While previous analyses of physiological data in cats suggested covariation of these two metrics, general characterization of their connection has never been performed. In the present study, we derive a rigorous relationship between VS and CI. To model phase-locking, we assume Poissonian spike trains with a temporally changing intensity function following a distribution. We demonstrate that VS and CI are mutually related via the so-called concentration parameter that determines the degree of phase-locking. We confirm that these theoretical results are largely consistent with physiological data recorded in the auditory brainstem of various animals. In addition, we generate artificial phase-locked spike sequences, for which recording and analysis parameters can be systematically manipulated. Our analysis results suggest that mismatches between empirical data and the theoretical prediction can often be explained with deviations from the distribution, including skewed or multimodal period histograms. Furthermore, temporal relations of spike trains across trials can contribute to higher CI values than predicted mathematically based on the VS. We find that, for most applications, a SAC bin width of 50 ms seems to be a favorable choice, leading to an estimated error below 2.5% for physiologically plausible conditions. Overall, our results provide general relations between the two measures of phase-locking and will aid future analyses of different physiological datasets that are characterized with these metrics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721039PMC
http://dx.doi.org/10.3389/fnins.2021.761826DOI Listing

Publication Analysis

Top Keywords

vector strength
8
analyses physiological
8
physiological data
8
spike trains
8
phase-locking
5
theoretical relationship
4
relationship measures
4
spike
4
measures spike
4
spike synchrony
4

Similar Publications

Background: Irritable Bowel Syndrome (IBS) is a prevalent condition characterized by dysregulated brain-gut interactions. Despite its widespread impact, the brain mechanism of IBS remains incompletely understood, and there is a lack of objective diagnostic criteria and biomarkers. This study aims to investigate brain network alterations in IBS patients using the functional connectivity strength (FCS) method and to develop a support vector machine (SVM) classifier for distinguishing IBS patients from healthy controls (HCs).

View Article and Find Full Text PDF

Background: Emerging evidence support the notion that loss of splicing repression by TDP-43, an RNA binding protein that was first implicated in ALS-FTD, underlies their pathogenesis. Previously, we showed that delivery of an AAV9 vector at early postnatal day expressing a fusion protein, termed CTR comprised of the N-terminal region of TDP-43 and an unrelated splicing repressor termed RAVER1 complemented the loss of TDP-43 in mice lacking TDP-43 in spinal motor neurons (ChAT-IRES-Cre;tardbp mice). To translate this potential therapeutic strategy to the clinic, it will be important to demonstrate benefit of such AAV delivery of CTR to motor neurons in adult mice.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the memory-related neurodegenerative disorder, contributing to 70% of the cases globally. Synaptic dysfunction is a well-known early event that causes progressive cognitive decline in AD. The latest AD therapeutics on the forefront only offer a moderate symptomatic relief with significant off-target effects.

View Article and Find Full Text PDF

In this paper, we demonstrated a novel bidirectional high-speed transmission system integrating a free-space optical (FSO) communication with a 5G wireless link, utilizing a high-power erbium-doped fibre amplifier (EDFA) for enhanced loss compensation. The system supports downlink rates of 1-Gb/s/4.5-GHz and 10-Gb/s at 24-GHz and 39-GHz, and an uplink rate of 10-Gb/s/28-GHz.

View Article and Find Full Text PDF

Recycling waste glass (WG) can be time-consuming, costly, and impractical. However, its incorporation into concrete significantly reduces environmental impact and carbon emissions. This paper introduces machine learning (ML) to civil engineering to optimise WG utilisation in concrete, supporting sustainability objectives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!