Introduction: Ion mobility-mass spectrometry is an emerging technology in the clinical setting for high throughput and high confidence molecular characterization from complex biological samples. Ion mobility spectrometry can provide isomer separations on the basis of molecular structure, the ability of which is increasing through technological developments that afford enhanced resolving power. Integrating multiple separation dimensions, such as liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) provide dramatic enhancements in the mitigation of molecular interferences for high accuracy clinical measurements.
Areas Covered: Multidimensional separations with LC-IM-MS provide better selectivity and sensitivity in molecular analysis. Mass spectrometry imaging of tissues to inform spatial molecular distribution is improved by complementary ion mobility analyses. Biomarker identification in surgical environments is enhanced by intraoperative biochemical analysis with mass spectrometry and holds promise for integration with ion mobility spectrometry. New prospects in high resolving power ion mobility are enhancing analysis capabilities, such as distinguishing isomeric compounds.
Expert Opinion: Ion mobility-mass spectrometry holds many prospects for the field of isomer identification, molecular imaging, and intraoperative tumor margin delineation in clinical settings. These advantages are afforded while maintaining fast analysis times and subsequently high throughput. High resolving power ion mobility will enhance these advantages further, in particular for analyses requiring high confidence isobaric selectivity and detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8881341 | PMC |
http://dx.doi.org/10.1080/14789450.2022.2026218 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!