Aims: It is well known that there is a socioeconomic gradient in the prevalence of many chronic diseases, including type 2 diabetes (T2DM). We present a simple assessment of the macro-level association between area socioeconomic disadvantage and the area-level prevalence of T2DM in Danish municipalities and the development in this relationship over the last decade.
Methods: We used readily available public data on the socioeconomic composition of municipalities and T2DM prevalence to illustrate this association and report the absolute and relative summary measures of socioeconomic inequality over the time period 2008-2018.
Results: The results show a persistent relationship between municipality socioeconomic disadvantage and T2DM prevalence across all analyses, with a modelled gap in T2DM prevalence between the most and least disadvantaged municipalities, the slope index of inequality, of 1.23 [0.97;1.49] in 2018.
Conclusions:
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/14034948211062308 | DOI Listing |
BMC Endocr Disord
January 2025
Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
Background: The Weight-adjusted-waist index (WWI) has emerged as a predictive factor for a range of metabolic disorders. To date, the predictive value of the WWI in relation to sarcopenia in individuals with diabetics has not been extensively explored. This study aims to investigate the impact of the WWI on the prevalence of sarcopenia among patients with type 2 diabetes mellitus (T2DM).
View Article and Find Full Text PDFNutrients
January 2025
Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia.
Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Department, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain.
Type 2 diabetes mellitus (T2DM) is one of the most widespread chronic diseases globally, with its prevalence expected to rise significantly in the years ahead. Previous studies on risk stratification for T2DM identify certain biomarkers, including glycated hemoglobin (HbA1c), oral glucose tolerance testing (OGTT), fructosamine, and glycated albumin, as key indicators for predicting the onset and progression of T2DM. However, these traditional markers have been shown to lack sensitivity and specificity and their results are difficult to analyze due to non-standardized interpretation criteria, posing significant challenges to an accurate and definitive diagnosis.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria.
Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease (CKD) and end-stage renal disease worldwide, affecting approximately 40% of individuals with type 2 diabetes (T2DM) and 30% of those with type 1 diabetes (T1DM). As the prevalence of diabetes continues to rise, the burden of DKD is expected to grow correspondingly. This review explores the roles of key molecular pathways, including the apelinergic system, vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) axis, and nitric oxide (NO)/nitric oxide synthase (NOS) signaling, in DKD pathogenesis and potential therapeutic applications.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
While recent studies suggested a potential causal link between type 1 diabetes mellitus (T1DM) but not type 2 diabetes mellitus (T2DM) and idiopathic pulmonary fibrosis (IPF), the involved mechanism remains unclear. Here, using a Mendelian randomization (MR) approach, we verified the causal relationship between the two types of diabetes mellitus and IPF and investigated the possible role of inflammation in the association between diabetes mellitus and IPF. Based on genome-wide association study (GWAS) summary data of T1DM, T2DM, and IPF, the univariable MR, multivariable MR (MVMR), and mediation MR were successively used to analyze the causal relationship.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!