Microplastics and its putative adverse effects on environmental and human health increasingly gain scientific and public attention. Systematic studies on the effects of microplastics are currently hampered by using rather poorly characterised particles, leading to contradictory results for the same particle type. Here, surface properties and chemical composition of two commercially available nominally identical polystyrene microparticles, frequently used in effect studies, were characterised. We show distinct differences in monomer content, ζ-potentials and surface charge densities. Cells exposed to particles showing a lower ζ-potential and a higher monomer content displayed a higher number of particle-cell-interactions and consequently a decrease in cell metabolism and proliferation, especially at higher particle concentrations. Our study emphasises that no general statements can be made about the effects of microplastics, not even for the same polymer type in the same size class, unless the physicochemical properties are well characterised.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.127961DOI Listing

Publication Analysis

Top Keywords

effects microplastics
8
monomer content
8
supposedly identical
4
identical microplastic
4
microplastic particles
4
particles differ
4
differ material
4
material properties
4
properties influencing
4
influencing particle-cell
4

Similar Publications

Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation.

Environ Sci Pollut Res Int

January 2025

CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.

Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups.

View Article and Find Full Text PDF

The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.

View Article and Find Full Text PDF

An increase in plastic waste and its release into the environment has led to health concerns over microplastics (MPs) in the environment. The intestinal mucosal layer is a key defense mechanism against ingested MPs, preventing the migration of particles to other parts of the body. MP migration through intestinal mucus is challenging to study due to difficulties in obtaining intact mucus layers for testing and numerous formulations, shapes, and sizes of microplastics.

View Article and Find Full Text PDF

Levels and oxidative toxicity of microplastics and perfluoroalkyl substances (PFASs) in different tissues of sea cucumber (Holothuria tubulosa).

Sci Total Environ

January 2025

School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy. Electronic address:

Nowadays, marine pollution is a global problem which finds in microplastics (MPs) and emerging pollutants, such as perfluoroalkyl substances (PFASs), two of the main culprits. Sea cucumbers are a group of marine benthic invertebrates that show ecological, economic and social relevance. As deposit/suspension feeders, sea cucumbers show high susceptibility to bioaccumulate marine pollutants, including PFASs and MPs.

View Article and Find Full Text PDF

Adapting Methods for Isolation and Enumeration of Microplastics to Quantify Tire Road Wear Particles with Confirmation by Pyrolysis GC-MS.

Environ Sci Technol

January 2025

U.S. Environmental Protection Agency, E205-02, Research Triangle Park, P.O. Box 12055, Durham, North Carolina 27711, United States.

The complex, varied composition (i.e., rubbers/elastomers, carbon black, fillers, additives, and embedded road materials) and wide density range of tire road wear particles (TRWPs) present challenges for their isolation and identification from environmental matrices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!