Dummy molecularly imprinted polymers for class-selective extraction of amphetamine-type stimulants from alcoholic and nonalcoholic beverages.

J Chromatogr A

College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, Liaoning, China, 116026. Electronic address:

Published: January 2022

Molecularly imprinted polymer was constructed for the first time through dummy imprinting strategy with homopiperonylamine as dummy template. The prepared dummy molecularly imprinted polymer (DMIP) showed high class selectivity towards the most popular amphetamine-type stimulants (ATSs) such as methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxy-amphetamine, and 3,4-methylenedioxy-N-ethylamphetamine with the imprinting factors of 2.280∼3.698 and selectivity factors of 1.654∼3.698. Moreover, ATSs could be rapidly adsorbed from water with the equilibrium time within 5 min. Hydrogen-bonding interaction between the amino groups of ATSs and carboxy on DMIP could be dominated adsorption mechanism. DMIP was employed as solid phase extraction (SPE) sorbents. Under the optimum extraction conditions, the method using DMIP-based SPE and high performance liquid chromatography-tandem mass spectrometry showed good linearity in the range of 0.025∼1.00 μmol L, good repeatability (RSD 4.8∼8.6%, n = 5) and low limits of quantification (0.007∼0.200 ng mL, S/N = 10). Satisfactory recoveries (72.5∼120%) with low RSD values (<10%) were obtained for all targets viz. spiked coke carbonated drinks, beer and cocktail. Compared with other commercial SPE sorbents, DMIP exhibited lower matrix effect (ME) for coke, beer and cocktail with ME values of 101∼124%, 75.8∼80.2% and 103∼128%, respectively. The obtained results suggested that the developed DMIP materials could be a potential candidate for pretreatment of ATSs in alcoholic and nonalcoholic beverages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2021.462759DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
12
dummy molecularly
8
amphetamine-type stimulants
8
imprinted polymer
8
dummy
4
imprinted polymers
4
polymers class-selective
4
class-selective extraction
4
extraction amphetamine-type
4
stimulants alcoholic
4

Similar Publications

In the present study, a novel voltammetric sensor based on a boron-doped copper oxide/graphene (B-CuO-Gr) nanocomposite and molecularly imprinted polymer (MIP) was developed for the detection of paclobutrazol (PAC) in apple and orange juice samples. The B-CuO-Gr nanocomposite was prepared using sol-gel and calcination methods. After modifying glassy carbon electrodes with the B-CuO-Gr nanocomposite, PAC-imprinted electrodes were prepared in the presence of 100.

View Article and Find Full Text PDF

Self-powered photoelectrochemical sensor based on molecularly imprinted polymer-coupled CBFO photocathode and AgS/SnS photoanode for ultrasensitive dimethoate sensing.

Anal Chim Acta

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:

Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.

View Article and Find Full Text PDF

Preparation of Molecularly Imprinted Electrochemical Sensors and Analysis of the Doping of Epinephrine in Equine Blood.

Sensors (Basel)

December 2024

Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.

In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.

View Article and Find Full Text PDF

The highly selective and sensitive determination of pesticide residues in food is critical for human health protection. Herein, the specific selectivity of molecularly imprinted polymers (MIPs) was proposed to construct an electrochemical sensor for the detection of carbendazim (CBD), one of the famous broad-spectrum fungicides, by combining with the synergistic effect of bioelectrocatalysis and nanocomposites. Gold nanoparticle-reduced graphene oxide (AuNP-rGO) composites were electrodeposited on a polished glassy carbon electrode (GCE).

View Article and Find Full Text PDF

Magnetic Molecularly Imprinted Polymers with Hydrophilic Shells for the Selective Enrichment and Detection of Rosmarinic Acid in Aqueous Extraction.

Plants (Basel)

December 2024

Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.

Rosmarinic acid (RA) is a natural active compound widely found in many plants belonging to the family of , , and so on, which has various important bioactivities, including being anti-oxidative, anti-inflammatory, antiviral, etc. Herein, novel hydrophilic magnetic molecularly imprinted polymers (HMMIPs) with a regular core-shell structure were successfully developed using RA as a template molecule, acrylamide (AM) as a functional monomer, N-N 'methylenebisacrylamide (MBA) as a cross-linking agent, and water as the porogen. After a series of characterization and adsorption performance analyses, it was found that HMMIPs are hydrophilic with an adsorption capacity of 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!