Reagentless electrochemical biosensors through incorporation of unnatural amino acids on the protein structure.

Biosens Bioelectron

Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL, 33136, United States; Clinical and Translational Science Institute, University of Miami, Miami, FL, 33136, United States. Electronic address:

Published: March 2022

Typical protein biosensors employ chemical or genetic labeling of the protein, thus introducing an extraneous molecule to the wild-type parent protein, often changing the overall structure and properties of the protein. While these labeling methods have proven successful in many cases, they also have a series of disadvantages associated with their preparation and function. An alternative route for labeling proteins is the incorporation of unnatural amino acid (UAA) analogues, capable of acting as a label, into the structure of a protein. Such an approach, while changing the local microenvironment, poses less of a burden on the overall structure of the protein. L-DOPA is an analog of phenylalanine and contains a catechol moiety that participates in a quasi-reversible, two-electron redox process, thus making it suitable as an electrochemical label/reporter. The periplasmic glucose/galactose binding protein (GBP) was chosen to demonstrate this detection principle. Upon glucose binding, GBP undergoes a significant conformational change that is manifested as a change in the electrochemistry of L-DOPA. The electroactive GBP was immobilized onto gold nanoparticle-modified, polymerized caffeic acid, screen-printed carbon electrodes (GBP-LDOPA/AuNP/PCA/SPCE) for the purpose of direct measurement of glucose levels and serves as a proof-of-concept of the use of electrochemically-active unnatural amino acids as the label. The resulting reagentless GBP biosensors exhibited a highly selective and sensitive binding affinity for glucose in the micromolar range, laying the foundation for a new biosensing methodology based on global incorporation of an electroactive amino acid into the protein's primary sequence for highly selective electrochemical detection of compounds of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404255PMC
http://dx.doi.org/10.1016/j.bios.2021.113861DOI Listing

Publication Analysis

Top Keywords

unnatural amino
12
incorporation unnatural
8
amino acids
8
protein
8
amino acid
8
structure protein
8
highly selective
8
reagentless electrochemical
4
electrochemical biosensors
4
biosensors incorporation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!