An antisense transcript transcribed from Irs2 locus contributes to the pathogenesis of hepatic steatosis in insulin resistance.

Cell Chem Biol

Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo 162-8655, Japan; Department of Molecular Diabetology, Graduate School of Medicine, The University of Tokyo, 3-7-1 Hongo, Bunkyo-Ku, Tokyo 113-8655, Japan. Electronic address:

Published: April 2022

During insulin resistance, lipid uptake by the liver is promoted by peroxisome proliferator-activated protein (PPAR) γ upregulation, leading to hepatic steatosis. Insulin, however, does not directly regulate adipogenic gene expression in liver, and the mechanisms for its upregulation in obesity remain unclear. Here, we show that the Irs2 locus, a critical regulator of insulin actions, encodes an antisense transcript, ASIrs2, whose expression increases in obesity or after refeeding in liver, reciprocal to that of Irs2. ASIrs2 regulates hepatic Pparg expression, and its suppression ameliorates steatosis in obese mice. The human ortholog AL162497.1, whose expression is correlated with that of hepatic PPARG and the severity of non-alcoholic steatohepatitis (NASH), shows genomic organization similar to that of ASIrs2. We also identified HARS2 as a potential binding protein for ASIrs2, functioning as a regulator of Pparg. Collectively, our data reveal a functional duality of the Irs2 gene locus, where reciprocal changes of Irs2 and ASIrs2 in obesity cause insulin resistance and steatosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2021.12.008DOI Listing

Publication Analysis

Top Keywords

insulin resistance
12
antisense transcript
8
irs2 locus
8
hepatic steatosis
8
steatosis insulin
8
irs2 asirs2
8
hepatic pparg
8
irs2
5
insulin
5
asirs2
5

Similar Publications

Purpose Of Review: To provide a narrative overview of trends and disparities in the cardiometabolic profiles of U.S. adults by synthesizing findings from nationally representative studies conducted between 1999 and 2020.

View Article and Find Full Text PDF

Context: The medications for metabolic syndromes are very minimal and the available are not effective and show adverse effects. There is a huge need for the development of effective and safe drugs to battle metabolic syndromes. In this context, our study aimed to decipher the key molecules from Artocarpus communis seed hexane fraction and their possible mechanism of action against metabolic syndrome.

View Article and Find Full Text PDF

This study aimed to evaluate the comparative efficacy of Myo-inositol (MI) and D-chiro-inositol (DCI) with metformin in enhancing ovarian function, promoting ovulation, and reducing perceived stress in patients with polycystic ovary syndrome (PCOS). Women with PCOS were identified using the Androgen Excess Society's criteria, and 60 participants were enrolled and divided equally into two groups. One group received a 40:1 ratio of MI plus DCI, while the other received metformin for a 12-week period.

View Article and Find Full Text PDF

Background: In previous efforts, health-related quality of life (HRQoL) improved for individuals at high risk of type 2 diabetes and cardiovascular disease after participation in community-based lifestyle interventions (LI) with a moderate-to-vigorous physical activity (MVPA) movement goal.

Purpose: It is unknown whether HRQoL improves with LI when the primary movement goal is to reduce sedentary behavior. HRQoL changes were examined among adults with overweight and prediabetes and/or metabolic syndrome randomized to a 12-month Diabetes Prevention Program-based Group Lifestyle Balance (DPP-GLB) community LI work with goals of weight-loss and either increasing MVPA (DPP-GLB) or reducing sedentary time (GLB-SED).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!