Several aspects of the cell biology of cystic fibrosis (CF) epithelial cells are altered including impaired lipid regulation, disrupted intracellular transport, and impaired microtubule regulation. It is unclear how the loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to these differences. It is hypothesized that the loss of CFTR function leads to altered regulation of carbonic anhydrase (CA) activity resulting in cellular phenotypic changes. In this study, it is demonstrated that CA2 protein expression is reduced in CF model cells, primary mouse nasal epithelial (MNE) cells, excised MNE tissue, and primary human nasal epithelial cells ( < 0.05). This corresponds to a decrease in CA2 RNA expression measured by qPCR as well as an overall reduction in CA activity in primary CF MNEs. The addition of CFTR-inhibitor-172 to WT MNE cells for ≥24 h mimics the significantly lower protein expression of CA2 in CF cells. Treatment of CF cells with l-phenylalanine (L-Phe), an activator of CA activity, restores endosomal transport through an effect on microtubule regulation in a manner dependent on soluble adenylate cyclase (sAC). This effect can be blocked with the CA2-selective inhibitor dorzolamide. These data suggest that the loss of CFTR function leads to the decreased expression of CA2 resulting in the downstream cell signaling alterations observed in CF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858677PMC
http://dx.doi.org/10.1152/ajplung.00022.2021DOI Listing

Publication Analysis

Top Keywords

cystic fibrosis
12
cftr function
12
function leads
12
carbonic anhydrase
8
soluble adenylate
8
adenylate cyclase
8
epithelial cells
8
microtubule regulation
8
loss cftr
8
protein expression
8

Similar Publications

Small Intestinal Bacterial Overgrowth and Childhood Malnutrition: A Comprehensive Review of Available Evidence.

Nutrients

December 2024

Department of Pediatrics 1, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street no 38, 540136 Târgu Mureș, Romania.

The gut microbiome is essential for children's normal growth and development, with its formation aligning closely with key stages of growth. Factors like birth method, feeding practices, and antibiotic exposure significantly shape the composition and functionality of the infant gut microbiome. Small intestinal bacterial overgrowth (SIBO) involves an abnormal increase in bacteria within the small intestine.

View Article and Find Full Text PDF

Mechanistic Insights into Succinic Acid as an Adjuvant for Ciprofloxacin in Treating Growing Within Cystic Fibrosis Airway Mucus.

Microorganisms

December 2024

Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

is a major cause of chronic respiratory infections in patients with cystic fibrosis (CF), with biofilm formation contributing to its persistence and antibiotic resistance. This study aimed to gain insights into the mechanistic action of succinic acid as a ciprofloxacin adjuvant against clinically relevant CF isolates, including small colony variants and mucoid strains, and a ciprofloxacin-resistant strain grown within CF dense mucus. Time-kill assays in artificial CF mucus, along with planktonic and surface-attached biofilm experiments, were used to assess the activity of succinic acid alone and in combination with sublethal ciprofloxacin concentrations.

View Article and Find Full Text PDF

The poor prognosis of infections associated with multidrug-resistant can be attributed to several conditions of the patient and virulence factors of the pathogen, such as the type III secretion system (T3SS), which presents the ability to inject four effectors into the host cell: ExoS, ExoT, ExoU and ExoY. The aim of this study was to analyze the distribution of genes through multiplex polymerase chain reaction in strains isolated from patients at a third-level pediatric hospital and their relationships with clinical variables, e.g.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophy type 2E/R4 (LGMD2E/R4) is a rare disease that currently has no cure. It is caused by defects in the gene, mainly missense mutations, which cause the impairment of the sarcoglycan complex, membrane fragility, and progressive muscle degeneration. Here, we studied the fate of some β-sarcoglycan (β-SG) missense mutants, confirming that, like α-SG missense mutants, they are targeted for degradation through the ubiquitin-proteasome system.

View Article and Find Full Text PDF

Effects of Several Bile Acids on the Production of Virulence Factors by .

Life (Basel)

December 2024

Bacterial Communication and Antimicrobial Strategies Research Unit, University of Rouen Normandy, IUT, 55 Rue Saint Germain, 27000 Evreux, France.

The presence of bile acids in the cystic fibrosis patient's lungs contributes to an increase in the inflammatory response, in the dominance of pathogens, as well as in the decline in lung function, increasing morbidity. The aim of this study is to determine the effects of exposure of to primary and secondary bile acids on the production of several virulence factors which are involved in its pathogenic power. The presence of bile acids in the bacterial culture medium had no effect on growth up to a concentration of 1 mM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!