Actuated by the growing attention to personal healthcare and the pandemic, the popularity of E-health is proliferating. Nowadays, enhancement on medical diagnosis via machine learning models has been highly effective in many aspects of e-health analytics. Nevertheless, in the classic cloud-based/centralized e-health paradigms, all the data will be centrally stored on the server to facilitate model training, which inevitably incurs privacy concerns and high time delay. Distributed solutions like Decentralized Stochastic Gradient Descent (D-SGD) are proposed to provide safe and timely diagnostic results based on personal devices. However, methods like D-SGD are subject to the gradient vanishing issue and usually proceed slowly at the early training stage, thereby impeding the effectiveness and efficiency of training. In addition, existing methods are prone to learning models that are biased towards users with dense data, compromising the fairness when providing E-health analytics for minority groups. In this paper, we propose a Decentralized Block Coordinate Descent (D-BCD) learning framework that can better optimize deep neural network-based models distributed on decentralized devices for E-health analytics. As a gradient-free optimization method, Block Coordinate Descent (BCD) mitigates the gradient vanishing issue and converges faster at the early stage compared with the conventional gradient-based optimization. To overcome the potential data scarcity issues for users' local data, we propose similarity-based model aggregation that allows each on-device model to leverage knowledge from similar neighbor models, so as to achieve both personalization and high accuracy for the learned models. Benchmarking experiments on three real-world datasets illustrate the effectiveness and practicality of our proposed D-BCD, where additional simulation study showcases the strong applicability of D-BCD in real-life E-health scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2022.3140455DOI Listing

Publication Analysis

Top Keywords

e-health analytics
16
block coordinate
12
coordinate descent
12
decentralized block
8
learning models
8
gradient vanishing
8
vanishing issue
8
e-health
7
models
5
personalized on-device
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!