Ovarian cancer is routinely diagnosed long after the disease has metastasized through the fibrous submesothelium. Despite extensive research in the field linking ovarian cancer progression to increasingly poor prognosis, there are currently no validated cellular markers or hallmarks of ovarian cancer that can predict metastatic potential. To discern disease progression across a syngeneic mouse ovarian cancer progression model, here we fabricated extracellular matrix mimicking suspended fiber networks: cross-hatches of mismatch diameters for studying protrusion dynamics, aligned same diameter networks of varying interfiber spacing for studying migration, and aligned nanonets for measuring cell forces. We found that migration correlated with disease while a force-disease biphasic relationship exhibited F-actin stress fiber network dependence. However, unique to suspended fibers, occurring at the tips of protrusions and not the length or breadth of protrusions displayed the strongest correlation with metastatic potential. To confirm that our findings were more broadly applicable beyond the mouse model, we repeated our studies in human ovarian cancer cell lines and found that the biophysical trends were consistent with our mouse model results. Altogether, we report complementary high throughput and high content biophysical metrics capable of identifying ovarian cancer metastatic potential on a timescale of hours.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265161PMC
http://dx.doi.org/10.1091/mbc.E21-08-0419DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
28
metastatic potential
16
biophysical metrics
8
cancer metastatic
8
cancer progression
8
mouse model
8
ovarian
7
cancer
7
quantitative biophysical
4
metrics rapid
4

Similar Publications

Graphical models are powerful tools to investigate complex dependency structures in high-throughput datasets. However, most existing graphical models make one of two canonical assumptions: (i) a homogeneous graph with a common network for all subjects or (ii) an assumption of normality, especially in the context of Gaussian graphical models. Both assumptions are restrictive and can fail to hold in certain applications such as proteomic networks in cancer.

View Article and Find Full Text PDF

Hypothesis: To evaluate how comorbidities affect mortality benefits of lung cancer screening (LCS) with low-dose computed-tomography (LDCT).

Methods: We developed a comorbidity index (PLCO-ci) using LCS-eligible participants' data from the Prostate Lung Colorectal and Ovarian (PLCO) trial (training set) and the National Lung Screening Trial (NLST) (validation set). PLCO-ci predicts 5-year non-lung cancer (LC) mortality using a regularized Cox model; with performance evaluated by the area under the ROC curve (ROC).

View Article and Find Full Text PDF

Self-interactive learning: Fusion and evolution of multi-scale histomorphology features for molecular traits prediction in computational pathology.

Med Image Anal

January 2025

Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Engineering Science, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford, UK. Electronic address:

Predicting disease-related molecular traits from histomorphology brings great opportunities for precision medicine. Despite the rich information present in histopathological images, extracting fine-grained molecular features from standard whole slide images (WSI) is non-trivial. The task is further complicated by the lack of annotations for subtyping and contextual histomorphological features that might span multiple scales.

View Article and Find Full Text PDF

Background: Melittin, a major peptide component of bee venom, has demonstrated promising anti-cancer activity across various preclinical cell models, making it a potential candidate for cancer therapy. However, its molecular mechanisms, particularly in ovarian cancer, remain largely unexplored. Ovarian cancer is a life-threatening gynecological malignancy with poor clinical outcomes and limited treatment options.

View Article and Find Full Text PDF

Objective: To provide up-to-date European Society of Urogenital Radiology (ESUR) guidelines for staging and follow-up of patients with ovarian cancer (OC).

Methods: Twenty-one experts, members of the female pelvis imaging ESUR subcommittee from 19 institutions, replied to 2 rounds of questionnaires regarding imaging techniques and structured reporting used for pre-treatment evaluation of OC patients. The results of the survey were presented to the other authors during the group's annual meeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!