Salinity is changing in aquatic systems due to anthropogenic activities (like irrigation or dam management) and climate change. Although there are studies on the effects of salinity variations on individual species, little is known about the effects on overall ecosystems, these impacts being more uncertain in transitional waters such as estuaries or fiords. The few works that do address this topic have considered these impacts using ecotoxicity models. However, these models state that an increase in the concentration of a pollutant generates an increase in the impacts, disregarding the effects of water freshening. The present research work introduces a general framework to address the impacts of salinity variations, including emission-related positive effects. We validated this framework by applying it to an estuarine area in Galicia (northwestern Spain), where sharp drops in the salt concentration have caused mass mortalities of shellfish in recent decades. This research work addresses for the first time the potential effects on the environment derived from a decrease in the concentration of essential substances, where the effects of an emission can also generate positive impacts. Moreover, it is expected that the framework can also be applied to model the environmental impacts of other essential substances in life cycle assessment (LCA), such as metals and macronutrients.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c04656DOI Listing

Publication Analysis

Top Keywords

salinity variations
12
positive effects
8
life cycle
8
cycle assessment
8
essential substances
8
effects
7
impacts
6
modeling impact
4
salinity
4
impact salinity
4

Similar Publications

Salt tolerance is a critical trait for plant survival and productivity in saline environments. Development of salt tolerant crops is a practical strategy for addressing soil salinity issues. In this study, RNA-Seq analysis was performed using two wheat cultivars with contrasting salt tolerance (Neixiang188, tolerant and Barra, sensitive) at 6 h and 24 h after salinity treatment to determine the genetic variations reflected in the RNA expression patterns and identify key genes associated with salt tolerance.

View Article and Find Full Text PDF

The ionic conductance in a charged nanopore exhibits a power-law behavior in low salinity-as has been verified in many experiments (G0∝c0α)-which is governed by surface charges. The surface charge inside a nanopore determines the zeta potential and ion distributions, which have a significant impact on ion transport, especially in a single-digit nanopore with potential leakage. However, precisely measuring surface charge density in a single-digit nanopore remains a challenge.

View Article and Find Full Text PDF

Xiangshan Bay, one of China's most eutrophic semi-enclosed bays, was studied to examine the seasonal distributions of salinity, temperature, nutrients, and nitrate isotopes (δN and δO) to elucidate seasonal variations in nitrate sources and the key factors driving nitrogen level fluctuations. Based on nitrate δN (6.1-8.

View Article and Find Full Text PDF

Fiber Optic Micro-Hole Salinity Sensor Based on Femtosecond Laser Processing.

Nanomaterials (Basel)

January 2025

School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China.

This study presents a novel reflective fiber Fabry-Perot (F-P) salinity sensor. The sensor employs a femtosecond laser to fabricate an open liquid cavity, facilitating the unobstructed ingress and egress of the liquid, thereby enabling the direct involvement of the liquid in light transmission. Variations in the refractive index of the liquid induce corresponding changes in the effective refractive index of the optical path, which subsequently influences the output spectrum.

View Article and Find Full Text PDF

Transitions across ecological boundaries, such as those separating freshwater from the sea, are major drivers of phenotypic innovation and biodiversity. Despite their importance to evolutionary history, we know little about the mechanisms by which such transitions are accomplished. To help shed light on these mechanisms, we generated the first high-quality, near-complete assembly and annotation of the genome of the American shad (Alosa sapidissima), an ancestrally diadromous (migratory between salinities) fish in the order Clupeiformes of major cultural and historical significance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!