The Langmuir-Blodgett (LB) technique, in which monolayers are commonly transferred from a liquid/gas interface to a solid surface, allows convenient fabrication of highly ordered thin films with molecular-level precision. This method is widely applicable to substances ranging from organic molecules to nanomaterials. Therefore, LB methods have provided a critical toolbox for researchers to engineer nanoarchitectures. The LB fabrication process is also compatible with numerous substrate materials over large areas, which is advantageous for practical application. Despite its wide applicability, the LB strategy has not been extensively employed in battery studies. The versatility of LB film, along with the accumulated knowledge associated with this technique, makes it a promising platform for promoting battery chemistry evolution. This Review summarizes recent advances of LB methods for high-performance battery development, including preparation of electrode materials, fabrication of functional layers, and battery diagnosis and thus illustrates the high utility of LB approaches in battery research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c19064 | DOI Listing |
J Colloid Interface Sci
January 2025
Research Center for Photoenergy Harvesting & Conversion Technology (phct), Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea. Electronic address:
Hypothesis: Understanding the Langmuir film formation process of flexible and soft materials like graphene oxide (GO) is essential, as it shows different trends compared to the conventional surface pressure-area (π-A) and compressional modulus (ε) isotherms of hard materials. Additionally, the size distribution and mechanical properties of the GO are assumed to affect the distinctive Langmuir-Blodgett (LB) film morphologies, such as overlaps and wrinkles.
Experiment: To gain a deeper insights of phase transitions in GO LB films, we propose a novel analysis of elastic tensile modulus versus surface pressure (|ε|-π) isotherms.
Mater Horiz
December 2024
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
The rapid development of information technology has put forward new requirements for multifunctional properties of transparent conductive films (TCFs) beyond their excellent optoelectrical performance. Despite the recent progress in the preparation of multifunctional films composed of TiCT MXenes, achieving highly uniform single-layer TiCT MXene films (SLMFs) with continuous and dense conductive pathways to realize multifunctional TCFs (M-TCFs) remains a significant challenge. Here, the Langmuir-Blodgett (LB) technique is employed to assemble large TiCT MXene (LM) flakes (∼52 μm) into SLMFs with controlled stacking density and morphology, enabling the fabrication of M-TCFs with high conductivity and transparency simultaneously.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russian Federation.
Spectrochim Acta A Mol Biomol Spectrosc
November 2024
Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India. Electronic address:
The herbicide Paraquat, widely used for efficient weed control, poses significant health risks to humans viz., severe toxicity to vital organs and induction of neurodegenerative disorder like Parkinson's disease, underscoring the urgent need for developing sensitive detection methods for the herbicide. This study aims at fabricating a novel SERS-active substrate SA-LB/Ag (silver nano-colloids adsorbed on Langmuir-Blodgett film of stearic acid), as a SERS based sensor having high sensitivity, uniformity, and reproducibility to detect ultra-trace amounts of paraquat.
View Article and Find Full Text PDFRSC Adv
November 2024
Thin Film Materials Research Group, Korea Research Institute of Chemical Technology Daejeon 34114 South Korea
In this study, we developed an HS gas sensor based on a MXene/MoS heterostructure, using the Langmuir-Blodgett (LB) technique and chemical vapor deposition (CVD). TiCT MXene nanosheets were uniformly transferred onto SiO/Si substrates the LB technique, achieving near-complete coverage. Subsequently, flower-like MoS was grown on the MXene-coated substrate through CVD, with vertical growth observed on the MXene layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!