Highly integrated miniature thermoelectric (TE) devices are desirable for applications of chip thermal management and self-powered energy harvesting. Currently, further performance improvement of micro-TE devices is largely limited by micro-nano-patterned processing, which shows the incompatibility with high-performance TE material fabrication or contradiction between machining accuracy and efficiency. This work presents a useful method to flexibly achieve high-precision array patterning for the micro-TE device through the femtosecond laser direct writing technique. By experimentally examining the material ablation process and numerically analyzing the electron-lattice temperature, the laser energy threshold for different materials is determined to obtain the selective removal between TE materials and metallic electrodes. Furthermore, the evaluation criteria are established between the formation quality of microgroove in the array structure and the laser pulse energy distribution, and the shape-control and property-control pattern processing can be realized through the reasonable control of the laser energy. Consequently, the BiTe-based TE pattern with a competitive leg density (496 pairs/cm) and a high filling factor (55%) is successfully constructed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c21326DOI Listing

Publication Analysis

Top Keywords

femtosecond laser
8
laser energy
8
laser
5
rapid selective
4
selective ablation
4
ablation high-precision
4
high-precision patterning
4
patterning micro-thermoelectric
4
micro-thermoelectric devices
4
devices femtosecond
4

Similar Publications

Femtosecond laser-assisted large-diameter lamellar corneal-limbal keratoplasty in ocular chemical burns.

Am J Ophthalmol Case Rep

March 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Purpose: This study highlights the feasibility of femtosecond laser-assisted large-diameter lamellar corneal-limbal keratoplasty and its efficacy in the treatment of ocular surface failure caused by bilateral ocular chemical injury.

Observations: The series included 3 patients with ocular surface failure caused by bilateral ocular chemical burns. After dissection of the host cornea, a femtosecond laser-assisted large-diameter lamellar corneoscleral button, with varying thickness of 250-400 μm, was sutured to the recipient bed.

View Article and Find Full Text PDF

Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.

View Article and Find Full Text PDF

The implementation of large-scale universal quantum computation represents a challenging and ambitious task on the road to quantum processing of information. In recent years, an intermediate approach has been pursued to demonstrate quantum computational advantage via non-universal computational models. A relevant example for photonic platforms has been provided by the Boson Sampling paradigm and its variants, which are known to be computationally hard while requiring at the same time only the manipulation of the generated photonic resources via linear optics and detection.

View Article and Find Full Text PDF

Micro- and nanomorphological modification and roughening of titanium implant surfaces can enhance osseointegration; however, the optimal morphology remains unclear. Laser processing of implant surfaces has demonstrated significant potential due to its precision, controllability, and environmental friendliness. Femtosecond lasers, through precise optimization of processing parameters, can modify the surface of any solid material to generate micro- and nanomorphologies of varying scales and roughness.

View Article and Find Full Text PDF

Introduction: This study aimed to compare changes in retinal oxygen saturation 1 month after femtosecond-assisted laser in situ keratomileusis (FS-LASIK) in Chinese adults with myopia using retinal oximetry.

Methods: In this prospective, observational, single-center cohort study, Chinese adults aged 18-45 years with myopia were categorized into four groups according to spherical equivalent (SE), with 66 eyes characterized as low myopia (LM -3.00D < SE ≤ -0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!