The gut microbiome and its interactions with the host have been shown to affect several aspects of human health and disease. Investigations to elucidate these mechanisms typically involve sequence analysis of fecal samples. To support these studies, we present methods to design RNA toehold switch sensors to detect microbial and host transcripts. The sensors are embedded in paper-based, cell-free reactions that enable affordable and rapid analysis of microbiome samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1998-8_22 | DOI Listing |
Small
January 2025
Department of Chemistry, Fudan University, Shanghai, 200438, China.
Rapid and sensitive detection of Epstein-Barr virus cell-free DNA (EBV cfDNA) is crucial for early diagnosis and monitoring of nasopharyngeal carcinoma (NPC), but accessibility to screening is limited by complicated and costly conventional DNA isolation and purification approaches. Here, a fully integrated ion concentration polarization (ICP)-enriched and nanozyme-catalyzed lateral flow assay (ICP-cLFA) is developed, enabling total analysis of EBV cfDNA in whole blood samples, with DNA isolation, pre-concentration, and amplification performed on a microfluidic chip, consequently providing the signal readout within 75 min. Specifically, ICP preconcentration and amplification steps, together with target recognition catalyzed by a platinum-decorated mesoporous gold nanosphere (MGNS@Pt) nanozyme, result in an ultralow detection limit of 4 aM in standard cfDNA samples and 100 aM in whole blood from NPC-bearing rats.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350207, China. Electronic address:
Background: Sexually transmitted infections (STIs) rank among the most prevalent acute infectious conditions and remain a major global public health concern. Notable STI pathogens include Chlamydia trachomatis (CT), Ureaplasma urealyticum (UU), and Neisseria gonorrhoeae (NG). Early detection and diagnosis are crucial for controlling the spread of STIs.
View Article and Find Full Text PDFSensors (Basel)
May 2024
Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA.
Specialized cancer treatments have the potential to exploit glutamine dependence to increase patient survival rates. Glutamine diagnostics capable of tracking a patient's response to treatment would enable a personalized treatment dosage to optimize the tradeoff between treatment success and dangerous side effects. Current clinical glutamine testing requires sophisticated and expensive lab-based tests, which are not broadly available on a frequent, individualized basis.
View Article and Find Full Text PDFAdv Healthc Mater
September 2024
Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY, 12222, USA.
ACS Synth Biol
September 2023
Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, California 93407, United States.
The fragility of biological systems during storage, transport, and utilization necessitates reliable cold-chain infrastructure and limits the potential of biotechnological applications. In order to unlock the broad applications of existing and emerging biological technologies, we report the development of a novel solid-state storage platform for complex biologics. The resulting solid-state biologics (SSB) platform meets four key requirements: facile rehydration of solid materials, activation of biochemical activity, ability to support complex downstream applications and functionalities, and compatibility for deployment in a variety of reaction formats and environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!