Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the recent increase in demand for high-strength concrete, higher cement content is utilized, which has increased the need for cement. The cement industry is one of the most energy-consuming sectors globally, contributing to 10% of global carbon dioxide (CO) gas emissions and global warming. Similarly, with rapid urbanization and industrialization, a vast number of by-products and waste materials are being generated in abundance, which causes environmental and health issues. Focusing on these two issues, this study aimed to develop an M50-grade eco-friendly high-strength concrete incorporating waste materials like marble dust powder (MDP) and fly ash (FA) as partial cement replacement. 2.5%, 5%, 7.5%, and 10% MDP and FA by weight of total binder was utilized combinedly, such that the 5%, 10%, 15%, and 20% cement content was replaced, respectively. The fresh state properties in terms of workability and hardened state properties in terms of compressive and flexural strengths were evaluated at 7, 14, 28, 56, and 90 days. Furthermore, to assess the environmental impact of MDP and FA, the embodied carbon and eco-strength efficiency were calculated. Based upon the results, it was observed that a combined 10% (5% MDP and 5% FA) achieved the highest strength; however, 15% (7.5% MDP and 7.5% FA) substitution could be optimal. Furthermore, the combined utilization of FA and MDP also enabled a reduction in the total embodied carbon. It decreased the cost of concrete, resulting in an eco-friendly, high-strength concrete.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-18379-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!