Blood transcriptome analysis revealed the immune changes and immunological adaptation of wildness training giant pandas.

Mol Genet Genomics

Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, People's Republic of China.

Published: January 2022

The giant panda (Ailuropoda melanoleuca) is a global flagship species for biodiversity conservation. As the time for captive giant pandas to be released into the wild matures, wildness training is provided to allow adaptation to their natural environment. It is assumed that changes in the immune system would be integral in this adaptation from captive to wild, where many more pathogens would be encountered in their natural habitats. Therefore, this study aims to determine the expression changes of immune-related genes and their potential as immunoassay markers for adaptation monitoring in wildness training giant pandas, and then to understand the adaptation strategy of wildness training giant pandas to the wild environment, thereby improving the success rate of panda reintroduction. We obtained 300 differentially expressed genes (DEGs) by RNA-seq, with 239 up-regulated and 61 down-regulated DEGs in wildness training giant pandas compared to captive pandas. Functional enrichment analysis indicated that up-regulated DEGs were enriched in several immune-related terms and pathways. There were 21 immune-related DEGs, in which most of them were up-regulated in wildness training giant pandas, including several critical innate and cellular immune genes. IL1R2 was the most significantly up-regulated gene and is a signature of homeostasis within the immune system. In the protein-protein interaction (PPI) analysis, CXCL8, CXCL10, and CCL5 were identified as the hub immune genes. Our results suggested that wildness training giant pandas have stronger innate and cellular immunity than captive giant pandas, and we proposed that a gene set of CXCL8, CXCL10, CCL5, CD3D, NFKBIA, TBX21, IL12RB2, and IL1R2 may serve as potential immunoassay markers to monitor and assess the immune status of wildness training giant pandas. Our study offers the first insight into immune alterations of wildness training giant pandas, paving the way for monitoring and evaluating the immune status of giant pandas when reintroducing them into the wild.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-021-01841-7DOI Listing

Publication Analysis

Top Keywords

giant pandas
44
wildness training
36
training giant
32
giant
12
pandas
12
wildness
9
training
9
immune
8
captive giant
8
immune system
8

Similar Publications

Low Reproductivity of Giant Pandas May Be Associated with Increased Vaginal .

Microorganisms

December 2024

Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China.

The poor reproductive capacity of giant pandas significantly hinders the development of captive populations, with 80.88% of adult individuals being unable to successfully become pregnant and deliver offspring. The disturbance of vaginal microbiota has been proven to potentially lead to miscarriage, abortion, and stillbirth in mammals.

View Article and Find Full Text PDF

Predicting Body Weight from Birth to Old Age in Giant Pandas Using Machine Learning.

Animals (Basel)

December 2024

Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China.

The giant panda () is one of the animals with the largest body weight differences between its birth and adult stages, where the newborn cub is 0.1% the size of its mother. The rapid growth of panda cubs has been reported previously, but little is known about the growth pattern of their entire lifetime.

View Article and Find Full Text PDF

Three-quarters of the planet's land surface has been altered by humans, with consequences for animal ecology, movements and related ecosystem functioning. Species often occupy wide geographical ranges with contrasting human disturbance and environmental conditions, yet, limited data availability across species' ranges has constrained our understanding of how human pressure and resource availability jointly shape intraspecific variation of animal space use. Leveraging a unique dataset of 758 annual GPS movement trajectories from 375 brown bears (Ursus arctos) across the species' range in Europe, we investigated the effects of human pressure (i.

View Article and Find Full Text PDF

Hibernating brown bears, due to a drastic reduction in metabolic rate, show only moderate muscle wasting. Here, we evaluate if ATPase activity of resting skeletal muscle myosin can contribute to this energy sparing. By analyzing single muscle fibers taken from the same bears, either during hibernation or in summer, we find that fibers from hibernating bears have a mild decline in force production and a significant reduction in ATPase activity.

View Article and Find Full Text PDF

Efficacy of azithromycin combined with compounded atovaquone in treating babesiosis in giant pandas.

Parasit Vectors

December 2024

Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610000, Sichuan, China.

Background: Babesia is a tick-borne protozoan blood parasite that can cause hemolytic anemia, thrombocytopenia, lethargy and splenomegaly in giant pandas.

Methods: We evaluated the efficacy and safety profile of a therapeutic regimen combining atovaquone and zithromycin in the context of babesiosis in giant pandas that have been naturally infected. The examined pandas underwent clinical and laboratory analyses, including hematology, biochemistry and thyroid hormone profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!