Molecular dynamics (MD) simulations were applied to investigate the wettability of aqueous hydrophilic and hydrophobic imidazolium-based ionic liquid (IL) nano-droplets on a graphite surface under a perpendicular electric field. Imminent transformation in the droplet configuration was observed at = 0.08 V Å both for hydrophobic ILs 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][NTF] and SPC/E water droplets. However, for the hydrophilic IL, 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF], the droplet was entirely elongated to column-shaped at = 0.09 V Å for lower weight percentages of ILs and at = 0.15 V Å for a higher weight percentage of ILs (, 50 wt%). We explored the impact of the electric field through various parameters such as mass and charge density distribution across the droplet, contact angle of the droplet, orientation of water dipoles, and hydrogen bond analysis. The external electric field was found to influence the orientation of water dipoles and the accumulation of charge at various interfaces was observed with an increase in an electric field, which finally leads to shape deformation and depletion of ions from the liquid-vapor interface of the droplet. However, this behavior strongly depends on the hydrophilicity or hydrophobicity of the ILs and thus, is critically examined for both the ILs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp01821c | DOI Listing |
ACS Nano
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Optical metasurfaces, arrays of nanostructures engineered to manipulate light, have emerged as a transformative technology in both research and industry due to their compact design and exceptional light control capabilities. Their strong light-matter interactions enable precise wavefront modulation, polarization control, and significant near-field enhancements. These unique properties have recently driven their application in biomedical fields.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia.
Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States.
Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.
View Article and Find Full Text PDFNano Lett
January 2025
Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.
studies of the relationship between surface spin configurations and spin-related electrocatalytic reactions are crucial for understanding how magnetic catalysts enhance oxygen evolution reaction (OER) performance under magnetic fields. In this work, 2D FeSe nanosheets with rich surface spin configurations are synthesized via chemical vapor deposition. magnetic force microscopy and Raman spectroscopy reveal that a 200 mT magnetic field eliminates spin-disordered domain walls, forming a spin-ordered single-domain structure, which lowers the OER energy barrier, as confirmed by theoretical calculations.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, University of Crete, 700 13 Heraklion, Crete, Greece.
During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!