Glyco-decorated spherical nucleic acids (SNAs) may be attractive delivery vehicles, emphasizing the sugar-specific effect on the outer sphere of the construct and at the same time hiding unfavorable distribution properties of the loaded oligonucleotides. As examples of such nanoparticles, tripodal sugar constituents of bleomycin were synthesized and conjugated with a fluorescence-labeled antisense oligonucleotide (AON). Successive copper(I)-catalyzed azide-alkyne and strain-promoted alkyne-nitrone cycloadditions (SPANC) were utilized for the synthesis. Then, the glyco-AON conjugates were hybridized with complementary strands of a C-based molecular spherical nucleic acid (i.e., a hybridization-mediated carrier). The formation and stability of these assembled glyco-decorated SNAs were evaluated by polyacrylamide gel electrophoresis (PAGE), UV melting profile analysis, and time-resolved fluorescence spectroscopy. Association constants were extracted from time-resolved fluorescence data. Preliminary cellular uptake experiments of the glyco-AON conjugates (120 nM solutions) and of the corresponding glyco-decorated SNAs (10 nM solutions) with human prostate cancer cells (PC3) showed an efficient uptake in each case. A marked variation in intracellular distribution was observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778632PMC
http://dx.doi.org/10.1021/acs.bioconjchem.1c00539DOI Listing

Publication Analysis

Top Keywords

spherical nucleic
12
nucleic acids
8
glyco-aon conjugates
8
glyco-decorated snas
8
time-resolved fluorescence
8
assembly bleomycin
4
bleomycin saccharide-decorated
4
saccharide-decorated spherical
4
acids glyco-decorated
4
glyco-decorated spherical
4

Similar Publications

Nomadic Nanomedicines: Medicines Enabled by the Paracrine Transfer Effect.

ACS Nano

January 2025

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

In nanomedicine, the cellular export of nanomaterials has been less explored than uptake. Traditionally viewed in a negative light, recent findings highlight the potential of nanomedicine export to enhance therapeutic effects. This Perspective examines key pathways for export and how nanomaterial design affects removal rates.

View Article and Find Full Text PDF

Spherical nucleic acids (SNAs) usually suffer from an undesired protein corona and disrupt the function of nucleic acids (e.g., aptamer), thereby compromising recognition and response to proteins in the biological environment.

View Article and Find Full Text PDF

Spherical nucleic acids (SNAs) consist of DNA strands arranged radially and packed densely on the surface of nanoparticles. Due to their unique properties, which are not found in naturally occurring linear or circular DNA, SNAs have gained widespread attention in fields such as sensing, nanomedicine, and colloidal assembly. The rapidly evolving applications of SNAs have driven a modernization of their syntheses to meet different needs.

View Article and Find Full Text PDF

Specific Response Assembly of 3D Space-Confined DNA Nanoaggregates for Rapid and Sensitive Detection of DNA Methyltransferase.

Anal Chem

December 2024

MOE Key Laboratory of Luminescence Analysis and Molecular Sensing, College of Chemistry and Chemical Engineering, Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing 400715, P. R. China.

Rapid and sensitive detection of DNA adenine methyltransferase (Dam) activity is crucial for both research and clinical applications. Herein, we utilize two types of spherical nucleic acids (SNAs) to specific response assemble into 3D space-confined DNA nanoaggregates that enable the rapid and sensitive detection of Dam activity. The SNAs feature 3D order DNA scaffolds that serve as cores for anchoring signal hairpin probes (S-HPs) and target hairpin probes (T-HPs).

View Article and Find Full Text PDF

(1) Background: Drug-induced liver injury is a prevalent global health concern that necessitates urgent development of safe and effective treatment options for patients. Drug-carrying nanoparticles have garnered significant attention for dis-ease treatments due to their capacity to enhance drug solubility, provide drug protection, and prolong release duration, thereby improving drug bioavailability and increasing therapeutic efficacy. We initially present a nanostructured carrier incorporating glycyrrhetinic acid and transferrin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!