Effect of Cage Occupancy on Stability and Decomposition of Methane Hydrate.

J Phys Chem B

Department of Chemistry, College of Chemistry and Materials Engineering/Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, P. R. China.

Published: January 2022

Gas hydrates usually contain a certain number of empty cages that will both affect the hydrate stability and reduce the gas storage capacity. In this work, by MD simulations, we found that the hydrate stability is related to the cage occupancy, the empty cage types, and especially the distribution of empty cages. With the decrease of overall occupancy, the stability of hydrate becomes worse. Under the same overall occupancy, the more concentrated the empty cages are, the more unstable the hydrate is and hence the faster it decomposes. The methane molecules may migrate between distorted cages during the decomposition, resulting in a temporary increase in the stability of hydrate. Hydrates with different empty cage distributions show different decomposition mechanisms: when empty cages are concentrated, the melting rate is fast first due to the rapid decomposition of empty cages, but the remaining filled cages will reduce the melting rate; when empty cages are separated on the contrary, the early melting is slow because of the high local occupancy, and the following melting will be accelerated because of the high melting surface area. It indicates that the empty cage distribution plays a controlling role in hydrate decomposition kinetics at different stages.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c07582DOI Listing

Publication Analysis

Top Keywords

empty cages
24
empty cage
12
empty
9
cage occupancy
8
occupancy stability
8
cages
8
cages will
8
hydrate stability
8
stability hydrate
8
melting rate
8

Similar Publications

The creation of hosts capable of accommodating different guest molecules may enable these hosts to play useful roles in chemical purifications, among other applications. Metal-organic cages are excellent hosts for various guests, but they generally incorporate rigid structural units that hinder dynamic adaptation to specific guests. Here we report a conformationally adaptable pseudo-cubic cage that can dynamically increase its cavity volume to fit guests with differing sizes.

View Article and Find Full Text PDF

Impact of confining hydrogen molecule inside fullerenes: A glance through DFT study.

J Mol Model

December 2024

Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, L8S 4M1, Canada.

Context: In this work, we have studied different properties of a series of fullerenes, from C to C by confining hydrogen molecule inside their cavity. The compression of the hydrogen molecule upon encapsulation is evidenced by its altered bond length, while a slight expansion of the fullerene cages due to H confinement is also noted. The chemical reactivity parameters of both the empty and H confined fullerenes are computed, alongside an examination of the energy components through energy decomposition analysis.

View Article and Find Full Text PDF

Selective aqueous anion recognition in an anionic host.

iScience

December 2024

Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA.

Article Synopsis
  • * These cages have a negative charge but can still hold onto certain anions that fit in their cavity, while excluding others that are too small or large.
  • * The slow rate of exchanging anions suggests potential for using these cages in environmental applications to manage the release of specific anions over time.
View Article and Find Full Text PDF

Bjerrum defects in s-II gas hydrate.

J Mol Graph Model

December 2024

Department of Chemistry, Süleyman Demirel University, 32260 Isparta, Turkey. Electronic address:

Article Synopsis
  • The study explores the energy and structural characteristics of Bjerrum defects in structure II gas hydrates using advanced computational methods.
  • It finds that these defects can influence the stability and behavior of guest molecules, like THF, within the hydrate structure by forming hydrogen bonds.
  • The research challenges previous understandings by indicating that guest-induced Bjerrum defects involve both L and D components, providing new insights that could affect the interpretation of related experimental properties.
View Article and Find Full Text PDF

Purpose: The aim of the study was to evaluate the feasibility of a bioabsorbable cage consisting of magnesium and magnesium phosphate cement (MPC) in a porcine lumbar interbody fusion model.

Methods: Twelve male Ba-Ma mini pigs underwent lumbar discectomy and fusion with an Mg-MPC cage or a PEEK cage at the L3/L4 and L4/L5 level. Computed tomography (CT) scans were made to evaluate the distractive property by comparing average disc space height (DSH) before and at 6, 12, and 24 weeks after the operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!