The development of flexible electronic skins with high performance and multifunctional sensing capabilities is of great significance for applications ranging from healthcare monitoring to artificial intelligence. To mimic and surpass the high-gauge-factor sensing properties of human skin, structure design and appropriate material selection of sensors are both essentially required. Here, we present an efficient, low-cost fabrication strategy to construct an ultra-highly sensitive, flexible pressure sensor by embedding the aligned nickel-coated carbon fibers (NICFs) in a polydimethylsiloxane (PDMS) substrate. Our design substantially contributes to ultrahigh sensitivity through the parallel circuit formed by aligned NICFs as well as surface spinosum microstructure molded by sandpaper. As a result, the sensor exhibits excellent sensitivity (15 525 kPa), a fast response time (30 ms), and good stability over 3000 loading-unloading cycles. Furthermore, these superior sensing properties trigger applications in water quality and wave monitoring in conjunction with mechanical flexibility and robustness. As a precedent for adjusting the sensitivities of the sensor, the NICFs/PDMS sensor provides a promising method for multiscenario healthcare monitoring, multiscale pressure spatial distribution, and human-machine interfacing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c08273 | DOI Listing |
Anal Chim Acta
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China. Electronic address:
Biosens Bioelectron
January 2025
State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China. Electronic address:
Exosomes have emerged as a promising noninvasive biomarker for early cancer diagnosis due to their ability to carry specific bioinformation related to cancer cells. However, accurate detection of trace amount of cancer-derived exosomes in complex blood remains a significant challenge. Herein, an ultra-highly sensitive SERS sensor, powered by the branched hybridization chain reaction (bHCR) and tetrahedral DNA-based trivalent aptamer (triApt-TDN), has been proposed for precise detection of cancer-derived exosomes.
View Article and Find Full Text PDFLight Sci Appl
May 2024
National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin, China.
Photoacoustic spectroscopy (PAS) as a highly sensitive and selective trace gas detection technique has extremely broad application in many fields. However, the laser sources currently used in PAS limit the sensing performance. Compared to diode laser and quantum cascade laser, the solid-state laser has the merits of high optical power, excellent beam quality, and wide tuning range.
View Article and Find Full Text PDFCarbohydr Polym
January 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
To realize on stable and real-time monitoring of human activities, novel hydrogels using polyacrylic acid (PAA) and carboxymethyl guar gum (CMGG) were fabricated as wearable and flexible strain or pressure sensors in the presence of lignosulfonate (LS) and Al. Based on the co-existence of metal coordination bonds, hydrogen bonds and ionic interaction in this system, the obtained hydrogels exhibited desirable mechanical properties with good self-recovery ability. The hydrogels displayed good self-adhesion behavior and an ultra-high tensile sensitivity (gauge factor (GF) = 24.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!