The reliability of gait parameters captured via instrumented walkways: a systematic review and meta-analysis.

Eur J Phys Rehabil Med

Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Published: June 2022

Introduction: Electronic pressure-sensitive walkways are commonly available solutions to quantitatively assess gait parameters for clinical and research purposes. Many studies have evaluated their measurement properties in different conditions with variable findings. In order to be informed about the current evidence of their reliability for optimal clinical and scientific decision making, this systematic review provided a quantitative synthesis of the test-retest reliability and minimal detectable change of the captured gait parameters across different test conditions (single and cognitive dual-task conditions) and population groups.

Evidence Acquisition: A literature search was conducted in PubMed, Embase, and Scopus until November 2021 to identify articles that examined the test-retest reliability properties of the gait parameters captured by pressure-sensitive walkways (gait speed, cadence, stride length and time, double support time, base of support) in adult healthy individuals or patients. The methodological quality was rated using the Consensus-Based Standards for the Selection of Health Measurement Instruments Checklist. Data were meta-analyzed on intraclass correlation coefficient to examine the test-retest relative reliability. Quantitative synthesis was performed for absolute reliability, examined by the weighted average of minimal detectable change values.

Evidence Synthesis: A total of 44 studies were included in this systematic review. The methodological quality was adequate in half of the included studies. The main finding was that pressure-sensitive walkways are reliable tools for objective assessment of spatial and temporal gait parameters both in single-and cognitive dual-task conditions. Despite few exceptions, the review identified intraclass correlation coefficient higher than 0.75 and minimal detectable change lower than 30%, demonstrating satisfactory relative and absolute reliability in all examined populations (healthy adults, elderly, patients with cognitive impairment, spinocerebellar ataxia type 14, Huntington's disease, multiple sclerosis, Parkinson's disease, rheumatoid arthritis, spinal cord injury, stroke or vestibular dysfunction).

Conclusions: Current evidence suggested that, despite different populations and testing protocols used in the included studies, the test-retest reliability of the examined gait parameters was acceptable under single and cognitive dual-task conditions. Further high-quality studies with powered sample sizes are needed to examine the reliability findings of the currently understudied and unexplored pathologies and test conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9987464PMC
http://dx.doi.org/10.23736/S1973-9087.22.07037-XDOI Listing

Publication Analysis

Top Keywords

gait parameters
24
systematic review
12
pressure-sensitive walkways
12
test-retest reliability
12
minimal detectable
12
detectable change
12
cognitive dual-task
12
dual-task conditions
12
reliability examined
12
reliability
9

Similar Publications

Background: Evidence of the effectiveness of physiotherapy, including muscle strength training, coordination training, aerobic exercise, cycling regimen, balance training, gait training, and activity of daily living training, in patients with degenerative cerebellar ataxia (DCA) was insufficient for clinical decision making. We aimed to explore clinical outcomes and examine the parameters associated with physical impairment and activity in people with DCA based on preregistration (PROSPERO: CRD42024493883).

Methods: The PubMed, Cochrane Library, CHINAL, and PEDro databases were searched for relevant randomized controlled trials (RCTs).

View Article and Find Full Text PDF

Gait, balance, and physical performance as markers of early Alzheimer's disease and related dementia risk.

J Alzheimers Dis

January 2025

Comprehensive Center for Brain Health, Department of Neurology, Miller School of Medicine, University of Miami, Boca Raton, FL, USA.

Background: Declining physical functionality is an indicator of cognitive impairment, distinguishing normal cognition (NC) from dementia. Whether this extends to pre-dementia stages is unclear.

Objective: Assess physical performance patterns, evaluate relationships with imaging biomarkers, and identify specific measures distinguishing NC, subjective cognitive decline (SCD) and mild cognitive impairment (MCI).

View Article and Find Full Text PDF

A Comprehensive Review of Vision-Based Sensor Systems for Human Gait Analysis.

Sensors (Basel)

January 2025

Centre for Automation and Robotics (CAR UPM-CSIC), Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI), Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain.

Analysis of the human gait represents a fundamental area of investigation within the broader domains of biomechanics, clinical research, and numerous other interdisciplinary fields. The progression of visual sensor technology and machine learning algorithms has enabled substantial developments in the creation of human gait analysis systems. This paper presents a comprehensive review of the advancements and recent findings in the field of vision-based human gait analysis systems over the past five years, with a special emphasis on the role of vision sensors, machine learning algorithms, and technological innovations.

View Article and Find Full Text PDF

Clinical motion analysis plays an important role in the diagnosis and treatment of mobility-limiting diseases. Within this assessment, relative (point-to-point) tracking of extremities could benefit from increased accuracy. Given the limitations of current wearable sensor technology, supplementary spatial data such as distance estimates could provide added value.

View Article and Find Full Text PDF

This study aimed to assess the intraday reliability of markerless gait analysis using an RGB-D camera versus a traditional three-dimensional motion analysis (3DMA) system with and without a simulated walking assistant. Gait assessments were conducted on 20 healthy adults walking on a treadmill with a focus on spatiotemporal parameters gathered using the RGB-D camera and 3DMA system. The intraday reliability of the RGB-D camera was evaluated using intraclass correlation coefficients (ICC 1, 1), while its consistency with the 3DMA system was determined using ICC (2, 1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!