Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202107532DOI Listing

Publication Analysis

Top Keywords

porous au-ag
4
au-ag nanoparticles
4
nanoparticles galvanic
4
galvanic replacement
4
replacement applied
4
applied single-particle
4
single-particle sers
4
sers probe
4
probe quantitative
4
quantitative monitoring
4

Similar Publications

Porous Nanoframe Based Plasmonic Structure With High-Density Hotspots for the Quantitative Detection of Gaseous Benzaldehyde.

Small

January 2025

Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.

Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots.

View Article and Find Full Text PDF

Dry synthesis of bi-layer nanoporous metal films as plasmonic metamaterial.

Nanophotonics

March 2024

Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy.

Nanoporous metals are a class of nanostructured materials finding extensive applications in multiple fields thanks to their unique properties attributed to their high surface area and interconnected nanoscale ligaments. They can be prepared following different strategies, but the deposition of an arbitrary pure porous metal is still challenging. Recently, a dry synthesis of nanoporous films based on the plasma treatment of metal thin layers deposited by physical vapour deposition has been demonstrated, as a general route to form pure nanoporous films from a large set of metals.

View Article and Find Full Text PDF

Na and Cl adsorption derived enhancement in 4-nitrophenol reduction using Au/Ag nanoparticle: An experimental and theoretical study.

Chemosphere

November 2024

Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, C.P 62210, Cuernavaca, Morelos, Mexico. Electronic address:

4-Nitrophenol (4-NP) is an organic contaminant attached to textiles, pharmaceuticals, and pesticides. Its presence has been increasingly detected in various water bodies such as lakes, rivers, and occasionally in drinking water. The present work shows the reduction of 4-NP using a hybrid catalytic system composed of gold and silver nanoparticles supported onto the biogenic porous silica (AgAu-SiO).

View Article and Find Full Text PDF

This study examined applications of polarized evanescent guided wave surface-enhanced Raman spectroscopy to determine the binding and orientation of small molecules and ligand-modified nanoparticles, and the relevance of this technique to lab-on-a-chip, surface plasmon polariton and other types of field enhancement techniques relevant to Raman biosensing. A simplified tutorial on guided-wave Raman spectroscopy is provided that introduces the notion of plasmonic nanoparticle field enhancements to magnify the otherwise weak TE- and TM-polarized evanescent fields for Raman scattering on a simple plasmonic nanoparticle slab waveguide substrate. The waveguide construct is called an optical chemical bench (OCB) to emphasize its adaptability to different kinds of surface chemistries that can be envisaged to prepare optical biosensors.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple symptoms, and its rapid screening is the research focus of surface-enhanced Raman scattering (SERS) technology. In this study, gold@silver-porous silicon (Au@Ag-PSi) composite substrates were synthesized by electrochemical etching and in-situ reduction methods, which showed excellent sensitivity and accuracy in the detection of rhodamine 6G (R6G) and serum from SLE patients. SERS technology was combined with deep learning algorithms to model serum features using selected CNN, AlexNet, and RF models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!