Fluid resuscitation is an essential intervention in critically ill patients, and its ultimate goal is to restore tissue perfusion. Critical illnesses are often accompanied by glycocalyx degradation caused by inflammatory reactions, hypoperfusion, shock, and so forth, leading to disturbed microcirculatory perfusion and organ dysfunction. Therefore, maintaining or even restoring the glycocalyx integrity may be of high priority in the therapeutic strategy. Like drugs, however, different resuscitation fluids may have beneficial or harmful effects on the integrity of the glycocalyx. The purpose of this article is to review the effects of different resuscitation fluids on the glycocalyx. Many animal studies have shown that normal saline might be associated with glycocalyx degradation, but clinical studies have not confirmed this finding. Hydroxyethyl starch (HES), rather than other synthetic colloids, may restore the glycocalyx. However, the use of HES also leads to serious adverse events such as acute kidney injury and bleeding tendencies. Some studies have suggested that albumin may restore the glycocalyx, whereas others have suggested that balanced crystalloids might aggravate glycocalyx degradation. Notably, most studies did not correct the effects of the infusion rate or fluid volume; therefore, the results of using balanced crystalloids remain unclear. Moreover, mainly animal studies have suggested that plasma may protect and restore glycocalyx integrity, and this still requires confirmation by high-quality clinical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769111 | PMC |
http://dx.doi.org/10.1097/CM9.0000000000001869 | DOI Listing |
J Coll Physicians Surg Pak
January 2025
Department of Pathology, National Institute of Cardiovascular Diseases, Karachi, Pakistan.
Objective: To determine the frequency of multidrug-resistant (MDR) bacterial isolates in respiratory specimens obtained from ventilated patients admitted to critical care units at the National Institute of Cardiovascular Diseases (NICVD), along with COVID-19-positive cases.
Study Design: An observational study. Place and Duration of the Study: National Institute of Cardiovascular Diseases, between November 2021 and March 2022.
J Coll Physicians Surg Pak
January 2025
Department of Anaesthesiology and Reanimation, Division of Intensive Care Medicine, Izmir Tepecik Training and Research Hospital, Izmir, Turkiye.
Objective: To evaluate the association of serum albumin levels with short-term mortality in ICU patients, including ICU and 28-day mortality.
Study Design: Observational study. Place and Duration of the Study: Intensive Care Unit, Izmir Tepecik Training and Research Hospital, Izmir, Turkiye, from January to July 2023.
Crit Care
January 2025
Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
Background: Low-volume hypertonic solutions, such as half-molar lactate (LAC), may be a potential treatment used for fluid resuscitation. This study aimed to evaluate the underlying cardiovascular effects and mechanisms of LAC infusion compared to sodium-matched hypertonic sodium chloride (SAL).
Methods: Eight healthy male participants were randomized in a controlled, single-blinded, crossover study.
Cureus
December 2024
Internal Medicine, Staten Island University Hospital, Staten Island, USA.
Rhabdomyolysis (RML) arises from the breakdown of muscle tissue, leading to the release of intracellular components into the bloodstream and potentially causing multi-organ failure. Multiple drugs have been reported to cause RML. We present here a rare instance of erythromycin-triggered RML in a patient who was not on any other potential RML-inducing medications.
View Article and Find Full Text PDFIntensive Care Med Exp
January 2025
Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium.
Background: Sepsis-induced cardiomyopathy (SICM) often occurs in the acute phase of sepsis and is associated with increased mortality due to cardiac dysfunction. The pathogenesis remains poorly understood, and no specific treatments are available. Although SICM is considered reversible, emerging evidence suggests potential long-term sequelae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!