Predator exposure is a life-threatening experience and elicits learned fear responses to the context in which the predator was encountered. The anterior cingulate area (ACA) occupies a pivotal position in a cortical network responsive to predatory threats, and it exerts a critical role in processing fear memory. The experiments were made in mice and revealed that the ACA is involved in both the acquisition and expression of contextual fear to predatory threat. Overall, the ACA can provide predictive relationships between the context and the predator threat and influences fear memory acquisition through projections to the basolateral amygdala and perirhinal region and the expression of contextual fear through projections to the dorsolateral periaqueductal gray. Our results expand previous studies based on classical fear conditioning and open interesting perspectives for understanding how the ACA is involved in processing contextual fear memory to ethologic threatening conditions that entrain specific medial hypothalamic fear circuits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730726 | PMC |
http://dx.doi.org/10.7554/eLife.67007 | DOI Listing |
Generalized learning is a fundamental process observed across species, contexts, and sensory modalities that enables animals to use past experiences to adapt to changing conditions. Evidence suggests that the prefrontal cortex (PFC) extracts general features of an experience that can be used across multiple situations. The anterior cingulate cortex (ACC), a region of the PFC, is implicated in generalized fear responses to novel contexts.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
Traumatic brain injury (TBI) is an inflammatory disease causing neurodegeneration. One of the consequences of inflammation is an elevated blood level of fibrinogen (Fg). Earlier we found that extravasated Fg induced an increased expression of neuronal nuclear factor kappa B (NF-κB) p65.
View Article and Find Full Text PDFBiomolecules
January 2025
Research and Education Resource Center, Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome.
View Article and Find Full Text PDFElife
January 2025
Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE).
View Article and Find Full Text PDFbioRxiv
January 2025
Astbury Centre for Structural Biology, School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
Memory is incorporated into the brain as physicochemical changes to engram cells. These are neuronal populations that form complex neuroanatomical circuits, are modified by experiences to store information, and allow for memory recall. At the molecular level, learning modifies synaptic communication to rewire engram circuits, a mechanism known as synaptic plasticity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!