Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: This study was undertaken to identify shared functional network characteristics among focal epilepsies of different etiologies, to distinguish epilepsy patients from controls, and to lateralize seizure focus using functional connectivity (FC) measures derived from resting state functional magnetic resonance imaging (MRI).
Methods: Data were taken from 103 adult and 65 pediatric focal epilepsy patients (with or without lesion on MRI) and 109 controls across four epilepsy centers. We used three whole-brain FC measures: parcelwise connectivity matrix, mean FC, and degree of FC. We trained support vector machine models with fivefold cross-validation (1) to distinguish patients from controls and (2) to lateralize the hemisphere of seizure onset in patients. We reported the regions and connections with the highest importance from each model as the common FC differences between the compared groups.
Results: FC measures related to the default mode and limbic networks had higher importance relative to other networks for distinguishing epilepsy patients from controls. In lateralization models, regions related to somatosensory, visual, default mode, and basal ganglia showed higher importance. The epilepsy versus control classification model trained using a 400-parcel connectivity matrix achieved a median testing accuracy of 75.6% (median area under the curve [AUC] = .83) in repeated independent testing. Lateralization accuracy using the 400-parcel connectivity matrix reached a median accuracy of 64.0% (median AUC = .69).
Significance: Machine learning models revealed common FC alterations in a heterogeneous group of patients with focal epilepsies. The distribution of the most altered regions supports the hypothesis that shared functional alteration exists beyond the seizure onset zone and its epileptic network. We showed that FC measures can distinguish patients from controls, and further lateralize focal epilepsies. Future studies are needed to confirm these findings by using larger numbers of epilepsy patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9022014 | PMC |
http://dx.doi.org/10.1111/epi.17160 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!