The farm-shelter forest network is a complex grid protection system, with a windbreak that is distinctly different from that of the single shelterbelt. We selected the farm-shelter forest network of a jujube field in the Tarim Basin of northwest China and used a combination of field measurements and wind tunnel tests to determine the optimal spacing interval between principal shelterbelts. The wind speed reductive curve of the farm-shelter forest network showed a gradual wind speed tendency to stability. Therefore, a model was established based on the energy transfer balance between the upper and the lower airflows for a steady wind speed. The prediction error of the model was found to be < 1%. The model results indicated that increasing the spacing interval between principal shelterbelts from 10 to 20 H, where H is the shelterbelt height, maintained more than 70% of the windbreak effect of the farm-shelter forest network. If the spacing interval between principal shelterbelts were to be increased from 10 to 20 H, the jujube planting area would be increased by 0.54%. Therefore, a thorough consideration of the windbreak effect of each shelterbelt, the synergistic effects of shelterbelts, the windbreak effects of tall crops, and the effects of temperature and humidity in farm-shelter forest networks indicates that increasing the spacing interval will not only maintain the windbreak effect, but it will also reduce the side effects of shelterbelts, increase the planting area, favor mechanized operation, and improve planting efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803805 | PMC |
http://dx.doi.org/10.1007/s11356-021-17272-1 | DOI Listing |
Environ Sci Pollut Res Int
February 2022
College of Life Sciences, Shihezi University, Shihezi, 832003, China.
The farm-shelter forest network is a complex grid protection system, with a windbreak that is distinctly different from that of the single shelterbelt. We selected the farm-shelter forest network of a jujube field in the Tarim Basin of northwest China and used a combination of field measurements and wind tunnel tests to determine the optimal spacing interval between principal shelterbelts. The wind speed reductive curve of the farm-shelter forest network showed a gradual wind speed tendency to stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!