Predicting future space use by animals requires models that consider both habitat availability and individual differences in habitat selection. The functional response in habitat selection posits animals adjust their habitat selection to availability, but population-level responses to availability may differ from individual responses. Generalized functional response (GFR) models account for functional responses by including fixed effect interactions between habitat availability and selection. Population-level resource selection functions instead account for individual selection responses to availability with random effects. We compared predictive performance of both approaches using a functional response in elk (Cervus canadensis) selection for mixed forest in response to road proximity, and avoidance of roads in response to mixed forest availability. We also investigated how performance changed when individuals responded differently to availability from the rest of the population. Individual variation in road avoidance decreased performance of both models (random effects: β = 0.69, 95% CI 0.47, 0.91; GFR: β = 0.38, 95% CI 0.05, 0.71). Changes in individual road and forest availability affected performance of neither model, suggesting individual responses to availability different from the functional response mediated performance. We also found that overall, both models performed similarly for predicting mixed forest selection (F = 0.14, p = 0.71) and road avoidance (F = 0.28, p = 0.60). GFR estimates were slightly better, but its larger number of covariates produced greater variance than the random effects model. Given this bias-variance trade-off, we conclude that neither model performs better for future space use predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-021-05098-0DOI Listing

Publication Analysis

Top Keywords

functional response
20
habitat selection
16
responses availability
12
random effects
12
mixed forest
12
selection
9
availability
9
individual differences
8
differences habitat
8
future space
8

Similar Publications

IFN-γ licenses normal and pathogenic ALPK1/TIFA pathway in human monocytes.

iScience

January 2025

CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France.

Alpha-kinase 1 (ALPK1) is an immune receptor sensing the bacterial nucleotide sugar ADP-heptose. ALPK1 phosphorylates TIFA leading to its oligomerization and downstream NF-κB activation. Specific mutations in are associated with an autoinflammatory syndrome termed ROSAH and with spiradenoma (skin cancers with sweat gland differentiation).

View Article and Find Full Text PDF

Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.

View Article and Find Full Text PDF

Purpose: Necrotizing fasciitis (NF) is a scarce but potentially life-threatening infection. However, no research has reported the cellular heterogeneity in patients with NF. We aim to investigate the change of cells from deep fascia in response to NF by single-cell RNA-seq.

View Article and Find Full Text PDF

Background: Cardiac autonomic neuropathy (CAN) is a significant complication in chronic kidney disease (CKD), leading to increased morbidity and mortality. Early detection is essential for managing CKD patients effectively, especially those on hemodialysis. This study evaluated the prevalence CAN in CKD and diagnostic accuracy of Bellavere's Score in predicting CAN in CKD patients, including those undergoing hemodialysis.

View Article and Find Full Text PDF

Generation and characterization of OX40-ligand fusion protein that agonizes OX40 on T-Lymphocytes.

Front Immunol

January 2025

Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!