A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Astragalus Total Saponins Ameliorate Peritoneal Fibrosis by Promoting Mitochondrial Synthesis and Inhibiting Apoptosis. | LitMetric

Peritoneal fibrosis (PF) is a disease caused by prolonged exposure of the peritoneum to high levels of dialysis fluid. Astragalus total saponins (ATS) is a phytochemical naturally occurring in that has anti-inflammatory and anti-oxidant properties. In this study, we constructed an model of PF using 4.25% glucose-containing administered intraperitoneally to rats and incubated peritoneal mesothelial cells (PMCs) with 4.25% glucose-containing peritoneal dialysis fluid to construct an model of PF. Furthermore, siRNA of PGC-1[Formula: see text] was used to inhibit the expression of PGC-1[Formula: see text] to further investigate the mechanism of the protective effect of ATS on PF. In both and models, ATS treatment showed a protective effect against PF, with ATS reducing the thickness of peritoneal tissues in PF rats, increasing the viability of PMCs, increasing the mitochondrial membrane potential and reducing apoptosis ratio. ATS treatment also reduced the expressions of peritoneal fibrosis markers (Smad2, p-Smad2 and [Formula: see text]-SMA) and apoptosis markers (Caspase3, cleaved-Caspase3 and Bax) and restored the expressions of mitochondrial synthesis proteins (PGC-1[Formula: see text], NRF1 and TFAM) in ATS-treated peritoneal tissues or PMCs. Furthermore, in the presence of PGC-1[Formula: see text] inhibition, the protective effect of ATS on PF was blocked. In conclusion, ATS treatment may be an effective therapeutic agent to inhibit high glucose-induced in peritoneal fibrosis through PGC-1[Formula: see text]-mediated apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1142/S0192415X22500094DOI Listing

Publication Analysis

Top Keywords

peritoneal fibrosis
16
pgc-1[formula text]
16
protective ats
12
ats treatment
12
astragalus total
8
total saponins
8
peritoneal
8
mitochondrial synthesis
8
dialysis fluid
8
425% glucose-containing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!