The iron-assisted autotrophic denitrification was plagued by passivation when introduced in surface flow constructed wetlands (SFCWs). Iron‑carbon micro-electrolysis (Fe/C-M/E) could facilitate the transfer of electrons during the utilization of iron. In this study, iron scraps coupling with activated carbon and biochar were applied to explore the effects of carbon materials on autotrophic denitrification. The results showed that TN removal rate in the SFCW with iron scraps and activated carbon (SFCW-IAC) and the SFCW with iron scraps and biochar (SFCW-IBC) were improved by 31.61% ± 8.18% and 14.09% ± 7.15%, and NO fluxes were reduced to 2.73 and 3.12 mg m d, respectively. The greater iron mass loss rate (0.91%) was confirmed in SFCW-IAC. Microbial community analysis reported that autotrophic denitrification and iron related genera were increased. This study proved that activated carbon was more suitable than biochar to Fe/C-M/E for denitrification enhancement and NO emission reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.152800DOI Listing

Publication Analysis

Top Keywords

activated carbon
16
autotrophic denitrification
12
iron scraps
12
iron‑carbon micro-electrolysis
8
surface flow
8
flow constructed
8
constructed wetlands
8
sfcw iron
8
iron
6
carbon
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!