Recently identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants Mu and C.1.2 have spike proteins with mutations that may confer resistance to natural and vaccine-elicited antibodies. Analysis of neutralizing antibody titers in the sera of vaccinated individuals without previous history of infection and from convalescent individuals show partial resistance of the viruses. In contrast, sera from individuals with a previous history of SARS-CoV-2 infection who were subsequently vaccinated neutralize variants with titers 4- to 11-fold higher, providing a rationale for vaccination of individuals with previous infection. The heavily mutated C.1.2 spike is the most antibody neutralization-resistant spike to date; however, the avidity of C.1.2 spike protein for angiotensin-converting enzyme 2 (ACE2) is low. This finding suggests that the virus evolved to escape the humoral response but has a decrease in fitness, suggesting that it may cause milder disease or be less transmissible. It may be difficult for the spike protein to evolve to escape neutralizing antibodies while maintaining high affinity for ACE2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687746PMC
http://dx.doi.org/10.1016/j.celrep.2021.110237DOI Listing

Publication Analysis

Top Keywords

c12 spike
12
individuals previous
12
sars-cov-2 variants
8
vaccine-elicited antibodies
8
previous history
8
spike protein
8
individuals
5
spike
5
high-titer neutralization
4
c12
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!