A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

STAnet: A Spatiotemporal Attention Network for Decoding Auditory Spatial Attention From EEG. | LitMetric

Objective: Humans are able to localize the source of a sound. This enables them to direct attention to a particular speaker in a cocktail party. Psycho-acoustic studies show that the sensory cortices of the human brain respond to the location of sound sources differently, and the auditory attention itself is a dynamic and temporally based brain activity. In this work, we seek to build a computational model which uses both spatial and temporal information manifested in EEG signals for auditory spatial attention detection (ASAD).

Methods: We propose an end-to-end spatiotemporal attention network, denoted as STAnet, to detect auditory spatial attention from EEG. The STAnet is designed to assign differentiated weights dynamically to EEG channels through a spatial attention mechanism, and to temporal patterns in EEG signals through a temporal attention mechanism.

Results: We report the ASAD experiments on two publicly available datasets. The STAnet outperforms other competitive models by a large margin under various experimental conditions. Its attention decision for 1-second decision window outperforms that of the state-of-the-art techniques for 10-second decision window. Experimental results also demonstrate that the STAnet achieves competitive performance on EEG signals ranging from 64 to as few as 16 channels.

Conclusion: This study provides evidence suggesting that efficient low-density EEG online decoding is within reach.

Significance: This study also marks an important step towards the practical implementation of ASAD in real life applications.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2022.3140246DOI Listing

Publication Analysis

Top Keywords

spatial attention
16
auditory spatial
12
eeg signals
12
attention
10
spatiotemporal attention
8
attention network
8
attention eeg
8
decision window
8
eeg
7
stanet
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!