Carbohydrates bearing a distinct complexity use a special code (Glycocode) to communicate with carbohydrate-binding proteins at a high precision to manipulate biological activities in complex biological environments. The level of complexity in carbohydrate-containing macromolecules controls the amount and specificity of information that can be stored in biomacromolecules. Therefore, a better understanding of the glycocode is crucial to open new areas of biomedical applications by controlling or manipulating the interaction between immune cells and pathogens in terms of trafficking and signaling, which would become a powerful tool to prevent infectious diseases. Even though a certain level of progress has been achieved over the past decade, synthetic glycomacromolecules are still lagging far behind naturally existing glycans in terms of complexity and precision because of insufficient and inefficient synthetic techniques. Currently, specific targeting at a cellular level using synthetic glycomacromolecules is still challenging. It is obvious that multidisciplinary collaborations are essential between different specialized disciplines to enhance the carbohydrate receptor-targeting paradigm for new biomedical applications. In this Perspective, recent developments in the synthesis of sophisticated glycomacromolecules are highlighted, and their biological and biomedical applications are also discussed in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.1c01294DOI Listing

Publication Analysis

Top Keywords

biomedical applications
16
synthetic glycomacromolecules
8
hierarchy complex
4
glycomacromolecules
4
complex glycomacromolecules
4
glycomacromolecules controlled
4
controlled topologies
4
biomedical
4
topologies biomedical
4
applications
4

Similar Publications

This study evaluated the antioxidant and antiproliferative effects of aqueous, ethanolic and methanolic extracts of Sedum nicaeense flowers and leaves. The MTT assay assessed cytotoxicity against colorectal cancer cells (Caco-2, HCT-116), breast cancer cells (T47D, MCF-7) and normal fibroblasts (MRC-5), while the ferric-reducing antioxidant power (FRAP) assay measured antioxidant capacity. Essential oils from flowers and leaves were analyzed using gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly aggressive adult brain cancer, characterised by poor prognosis and a dismal five-year survival rate. Despite significant knowledge gains in tumour biology, meaningful advances in patient survival remain elusive. The field of neuro-oncology faces many disease obstacles, one being the paucity of faithful models to advance preclinical research and guide personalised medicine approaches.

View Article and Find Full Text PDF

The potential of large language models (LLMs) in medical applications is significant, and Retrieval-augmented generation (RAG) can address the weaknesses of these models in terms of data transparency and scientific accuracy by incorporating current scientific knowledge into responses. In this study, RAG and GPT-4 by OpenAI were applied to develop GuideGPT, a context aware chatbot integrated with a knowledge database from 449 scientific publications designed to provide answers on the prevention, diagnosis, and treatment of medication-related osteonecrosis of the jaw (MRONJ). A comparison was made with a generic LLM ("PureGPT") across 30 MRONJ-related questions.

View Article and Find Full Text PDF

Applying artificial intelligence to uncover the genetic landscape of coagulation factors.

J Thromb Haemost

January 2025

Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital - via Manzoni 56, 20089 Rozzano, Milan, Italy. Electronic address:

Artificial intelligence (AI) is rapidly advancing our ability to identify and interpret genetic variants associated with coagulation factor deficiencies. This review introduces AI, with a specific focus on machine learning (ML) methods, and examines its applications in the field of coagulation genetics over the past decade. We observed a significant increase in AI-related publications, with a focus on hemophilia A and B.

View Article and Find Full Text PDF

There is a need for advanced developments to battle aggressive breast cancer variations and to address treatment resistance. In cancer therapy, ZnO nanoparticles (NPs) possess the ability to selectively and effectively induce apoptosis in cancer cells. There is an urgent necessity to create novel anti-cancer therapies, and recent studies indicate that ZnO nanoparticles have significant promise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!