The ability to control structure in molecular glasses has enabled them to play a key role in modern technology; in particular, they are ubiquitous in organic light-emitting diodes. While the interplay between bulk structure and optoelectronic properties has been extensively investigated, few studies have examined molecular orientation near buried interfaces despite its critical role in emergent functionality. Direct, quantitative measurements of buried molecular orientation are inherently challenging, and many methods are insensitive to orientation in amorphous soft matter or lack the necessary spatial resolution. To overcome these challenges, we use polarized resonant soft X-ray reflectivity (p-RSoXR) to measure nanometer-resolved, molecular orientation depth profiles of vapor-deposited thin films of an organic semiconductor Tris(4-carbazoyl-9-ylphenyl)amine (TCTA). Our depth profiling approach characterizes the vertical distribution of molecular orientation and reveals that molecules near the inorganic substrate and free surface have a different, nearly isotropic orientation compared to those of the anisotropic bulk. Comparison of p-RSoXR results with near-edge X-ray absorption fine structure spectroscopy and optical spectroscopies reveals that TCTA molecules away from the interfaces are predominantly planar, which may contribute to their attractive charge transport qualities. Buried interfaces are further investigated in a TCTA bilayer (each layer deposited under separate conditions resulting in different orientations) in which we find a narrow interface between orientationally distinct layers extending across ≈1 nm. Coupling this result with molecular dynamics simulations provides additional insight into the formation of interfacial structure. This study characterizes the local molecular orientation at various types of buried interfaces in vapor-deposited glasses and provides a foundation for future studies to develop critical structure-function relationships.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c19948DOI Listing

Publication Analysis

Top Keywords

molecular orientation
20
buried interfaces
12
orientation
8
molecular
8
organic semiconductor
8
characterization interfacial
4
interfacial orientation
4
orientation molecular
4
molecular conformation
4
conformation glass-forming
4

Similar Publications

Context: The flow equations are derived for describing the two-dimensional hybrid molecular-scale and continuum flows in the very small surface separation with inhomogeneous solid surfaces and they can be applied for designing the specific bearings. The aim of the present study is to solve this specific flow problem in engineering with normal computational cost. The flow factor approach model describes the flow of the molecule layer adjacent to the solid surface and the Newtonian fluid model describes the flow of the intermediate continuum fluid.

View Article and Find Full Text PDF

Expansion counteraction effect assisted vanadate with rich oxygen vacancies as a high cycling stability cathode for aqueous zinc-ion batteries.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering and School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In this study, a novel tunnel structure vanadate NaVO (NaVO) cathode for aqueous zinc ion batteries (AZIBs) is facilely fabricated by thermal decomposition of polyoxovanadate containing NH ions. The NaVO cathode is characterized by abundant oxygen vacancies and nanometer dimensions. These attributes can offer extra reaction sites and suppress structural collapse during circulation.

View Article and Find Full Text PDF

Controlled Self-assembly of Nanographdiynes Mediated by Molecular Dipoles Induced by Rotatory Asymmetric Substituents.

Chemistry

January 2025

Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organi, Zhongguancun North First Street 2, 100190, Beijing, CHINA.

The discrete π- stacks of specific lengths and orientation is crucial for understanding the impact of intermolecular interactions on optical or electronic properties of nanographdiynes. We designed and synthesized nanographdiynes modified with bulky rotatable asymmetric substituents. The peripheral substituents with different push-pull electronic properties can induce molecular dipoles perpendicular to nanoGDY π surface with different orientation.

View Article and Find Full Text PDF

Heterodimeric Photosensitizer as Radical Generators to Promoting Type I Photodynamic Conversion for Hypoxic Tumor Therapy.

Adv Mater

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, China.

Photodynamic therapy (PDT) using traditional type II photosensitizers (PSs) has been limited in hypoxic tumors due to excessive oxygen consumption. The conversion from type II into a less oxygen-dependent type I PDT pathway has shown the potential to combat hypoxic tumors. Herein, the design of a heterodimeric PS, NBSSe, by conjugating a widely used type I PS NBS and a type II PS NBSe via molecular dimerization, achieving the aggregation-regulated efficient type I photodynamic conversion for the first time is reported.

View Article and Find Full Text PDF

A fluoroalkyl-containing electron acceptor (Y-SSM) is designed and synthesized to control the orientation of the benchmark non-fullerene acceptor Y6 in thin films. Due to the low surface energy of the two fluoroalkyl chains at the terminal part of Y-SSM, it spontaneously segregates to the film surface during spin coating, forming a monolayer of edge-on oriented Y-SSM. The Y-SSM monolayer leads to crystallization of the underlying Y6 to induce a standing-up orientation in the bulk of the films, which is strikingly different from pure Y6 films that tend to be a face-on orientation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!