Upscaling 3D Engineered Trees for Off-Grid Desalination.

Environ Sci Technol

Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States.

Published: January 2022

More than 70% of the population without access to safe drinking water lives in remote and off-grid areas. Inspired by natural plant transpiration, we designed and tested in this study an array of scalable three-dimensional (3D) engineered trees made of natural wood for continuous water desalination to provide affordable and clean drinking water. The trees took advantage of capillary action in the wood xylems and lifted water more than 1 foot off the ground with or without solar irradiation. This process overcame some major challenges of popular solar-driven water evaporation and water harvesting, such as intermittent operation, low water production rate, and system scaling. The trade-off between energy transfer and system footprint was tackled by optimizing the interspacing between the trees. The scaled system has a ratio of surface area (vapor generation) to project area (water transport) up to 118, significantly higher than the prevailing flat-sheet design. The extensive surface area evaporated water at a temperature cooler than the surrounding air, drawing on multiple environmental energy sources including solar, wind, or ambient heat in the air and realized continuous operation. The total energy for evaporation reached over 300% of the one-sun irradiance, enabling a freshwater production rate of 4.8 L m h from an array of 16 trees in an enclosed room and 14 L m h under a 3 m/s airflow. Furthermore, we found that the ambient heat in the air contributed 60%-70% of the total latent heat of vaporization when energy sources were decoupled. During long-term desalination tests, the engineered trees demonstrated a self-cleaning mechanism with daily cycles of salt accumulation and dissolution. Combining the quantification from an evaporation model and meteorology data covering the globe, we also demonstrated that the 3D engineered trees can be of particular interest for sustainable desalination in the Middle East and North Africa (MENA) regions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c05777DOI Listing

Publication Analysis

Top Keywords

engineered trees
16
water
9
drinking water
8
production rate
8
surface area
8
energy sources
8
ambient heat
8
heat air
8
trees
7
upscaling engineered
4

Similar Publications

Chromosome-level de novo genome unveils the evolution of Gleditsia sinensis and thorns development.

Genomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, China. Electronic address:

Gleditsia sinensis Lam. (G. sinensis) as an important species within the Leguminosae family, has been utilized in Chinese medicine for centuries, and its thorns serve as a chief medicinal ingredient.

View Article and Find Full Text PDF

Competition is ubiquitous and an important driver of tree mortality. Non-structural carbohydrates (NSCs, including soluble sugars and starch) and C-N-P stoichiometries are affected by the competitive status of trees and, in turn, physiologically determine tree growth and survival in competition. However, the physiological mechanisms behind tree mortality caused by intraspecific competition remain unclear.

View Article and Find Full Text PDF

Street and park trees often endure harsher conditions, including increased temperatures and drier soil and air, than those found in urban or natural forests. These conditions can lead to shorter lifespans and a greater vulnerability to dieback. This literature review aimed to identify confirmed causes of street and park tree dieback in urban areas from around the world.

View Article and Find Full Text PDF

Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from and trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives.

View Article and Find Full Text PDF

Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar Wildlife Sanctuary. Using random sampling methods, data were gathered from six distinct forest communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!