Exposing concrete to high temperatures leads to harmful effects in its mechanical and microstructural properties, and ultimately to total failure. In this sense, various types of waste materials are exploited not only to tackle serious environmental issues but also to enhance the thermal stability of concrete exposed to elevated temperatures. Furthermore, nanomaterials have been incorporated in concrete as admixtures to reduce the thermal degradation of concrete due to exposure to high temperatures. In the present study, the effects of nanosilica (NS) incorporation on the properties of concrete subjected to elevated temperature are discussed in several sequential sections. The process mechanism of concrete deterioration due to fire exposure and the important factors that could affect the performance of concrete under fire were evaluated. Moreover, brief highlights on the effect of elevated temperature on concrete containing waste materials are included in this review paper. Reviews and summaries of the available and updated literature regarding concrete containing NS are considered. According to the findings of the studies under review, the addition of nanosilica to concrete contributed in reduced strength loss, minimized internal porosity, and enhanced matrix compactness in concrete.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-18310-8DOI Listing

Publication Analysis

Top Keywords

concrete
12
elevated temperature
12
nanosilica incorporation
8
properties concrete
8
concrete exposed
8
exposed elevated
8
high temperatures
8
waste materials
8
incorporation mechanical
4
mechanical properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!